
Sold to
aidar.gf@gmail.com

2

The iOS Interview Guide

Questions, answers, and general guidance on what iOS
developers should know to nail any tech interview. 1st edition,

version 1.0.6.

Alex Bush

The iOS Interview Guide

Alex Bush

Copyright ©2018 Aleksandr Lopatin (Alex Bush).

Notice of Rights

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any means
without prior written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source code) are provided
on an as is basis, without warranty of any kind, express of implied, including
but not limited to the warranties of merchantability, fitness for a particular pur-
pose, and noninfringement. In no event shall the author or copyright holder be
liable for any claim, damages or other liability, whether in action of contract,
tort or otherwise, arising from, out of or in connection with the software or the
use of other dealing in the software.

Trademarks

All trademarks and registered trademarks appearing in this book are the prop-
erty of their own respective owners.

ii

Preface

The iOS Interviews Guide V 1.0.6.

This is the final (1.0.6) version of The iOS Interviews Guide (1st edition) by
Alex Bush.

This book is something I wish I had when I was a junior developer just starting
out with iOS development. I wasn’t sure what I should know as an aspiring iOS
dev, what areas were important and I should pay close attention to, and what I
could just glance over. There are a lot of resources and articles about interview
questions out there, but I found that none of them really systematized what
they were talking about. Some would have questions about memory manage-
ment and byte shifting mixed in with questions about AutoLayout and design
patterns, which does not make any sense and doesn’t help developers who are
seeking guidance in their quest. And this is how this book came to be. I hope
you will enjoy reading it as much as I enjoyed working on it. I wish you all the
best on your job hunt!

Feel free to reach out if you have any questions, find a typo, find something
unclear, or if you’d just like to say hi or share your recent development or
interview experience!

• My email is alex.bush@smartcloud.io

• Twitter: alex_v_bush

• Github: alexvbush

iii

mailto:alex.bush@smartcloud.io
https://twitter.com/alex_v_bush
https://github.com/alexvbush

• LinkedIn: https://www.linkedin.com/in/alexvbush/

iv

https://www.linkedin.com/in/alexvbush/

Foreword

By Andrew Rohn, iOS Software Engineer at Reddit and Co-Host of Inside
iOS Dev Podcast

Thanks to ‘The iOS Interview Guide’, I skillfully interviewed with Facebook,
Uber, Reddit, Pandora, and many other great companies and I now work at
Reddit as an iOS Software Engineer.

In one interview, I gave an answer to a system design question that was so good
that the interviewer asked me “Have you solved this problem before?”. To
which I responded truthfully, “No.” Later, he mentioned that the sophistication
and quality of my answer greatly exceeded that of someone with only one year
of experience.

My recent successful interview process is direct evidence of the authority and
quality of this book. If you need more convincing about the quality of this book
or if you’d like to learn more about the author – continue reading this foreword.
Otherwise, I recommend you get straight to reading this book so that you can
crush your next interview!

I think Alex is the perfect author for this book for three reasons: humility,
pragmatism, and curiosity.

I’m a junior iOS Software Engineer with just one year of professional expe-
rience. My first year working professionally was done under the mentorship
of Alex. I worked closely with Alex at Wanelo where we pair programmed
together every other day. I think Alex might quibble at being called my “men-
tor”. He might prefer something that defines our work relationship as equals

v

working together. This humility translates into what makes him a great teacher
and mentor. Alex doesn’t speak down to you. He speaks plainly and if you
don’t understand something he’ll clarify it for you. Whenever I needed guid-
ance, I knew Alex would graciously share his time with me until I had a full
understanding.

Alex has a very pragmatic problem solving style. He understands that, at the
end day, us software engineers are there to help a business make more money.
If he talks architecture or algorithms he stays grounded in reality. He knows
that your employer doesn’t care what hip framework you used or what esoteric
algorithm you vainly implemented. He realizes that good code is an asset to the
company and that bad code can cripple a company from being able to keep up
with competitors. I attribute this to his time as a successful consultant where
clients needed a software system that would drive their business. Alex knows
that employers want to see that you can consistently ship quality code in a
timely manner.

Lastly, Alex has a boundless curiosity that ceaselessly propels his skills for-
ward. He is constantly reading books, watching talks, and trying new things.
After working with him, these habits have rubbed off on me. We had an in-
formal book club every morning where he shared with me his new insights or
learnings and encouraged me to share as well. This curiosity drove Alex to
being knowledgeable not just in the iOS world but in the entire full stack. He
has created systems that required both a backend application and client iOS ap-
plication. Because of this, he has a rare and invaluable end-to-end system per-
spective. This unquenchable curiosity is what gives me confidence in Alex’s
word. He is an authority because he is always reaching for the next level of
understanding.

vi

Testimonials

Will’s video testimonial on YouTube

– Will Lundy, iOS Developer at Wells Fargo

Yusuke’s video testimonial on YouTube

– Yusuke Kawanabe, Lead iOS Engineer at Nima.

Alex Bush’s book, “The iOS Interview Guide” is a very helpful resource for a
variety of reasons. It helps the experienced developer prepare for their next
career move by identifying concepts, and areas that technology companies will
ask about during the application, and interview process. The book is an ex-
cellent resource because it’s not simply a checklist of topics, and concepts, to
study, but also discusses these concepts as well, and identifies potential pitfalls
that the unsuspecting applicant may fall into during the interview process. This
book is also a valuable resource for the junior developer who is trying to get
an understanding as to what skills are expected from someone who is senior.
This book helps chart a course for the junior developer in better improving
their skills, and identifying those key areas which are important, thus allowing
the junior developer to plan out their career development more efficiently. This
book is indeed a valuable resource for developers in all stages of their careers.
Thanks Alex for doing such a wonderful job!

– Fayyazuddin Syed, Senior iOS Developer

“Alex has hit a home-run with the iOS interview guide. It has been my go to
reference while looking for a job in this field. I can’t thank him enough for
sharing his insight into what it takes to be prepared for an interview at any

vii

https://www.youtube.com/watch?v=GEtsHqGwBT4
https://www.youtube.com/watch?v=bh-edX9GFKM

level of your career!”

– Paul DeFilippi, iOS Developer

“As a junior developer, I just want to say that the information you’re sharing is
top notch and extremely eye-opening to the naive approaches that I have taken.
Thank you so much for doing this.”

– Jovanny Espinal, iOS Software Engineer at Blue Apron

“I am glad to inform you that your book on Swift Interview question helped me
a lot , I have two current jobs under process for next rounds. All of the question
I have answered the same way as you wrote in Expected Answer. It is really
worth buying it .”

– Ramkrishna Baddi, iOS Developer

“An excellent guide to help self-starter iOS programmers land their dream
jobs. This book can be your ultimate guide for your iOS development study
as well as getting your first job as an iOS developer.”

– Jon Lu, Freelance iOS Developer

viii

Acknowledgments

First of all I’d like to thank all the early adopters of this book for all the feed-
back they gave me. Writing a book is a laborious endeavor and people like
you giving invaluable feedback and validation make it worthwhile and fuel my
enthusiasm for actually continuing this project.

I’d like to give special thanks to Artemij (Art) Fedosejev for showing me, with
a personal example, that writing a book is actually something doable, and for
supporting me throughout this journey with advice and inspiration. You will
go far; the dots are connecting, mark my words.

Thanks to my mom and my grandpa, who were always supportive of me through-
out life. Thank you for instilling in me this clarity and surety that I can achieve
anything I want.

Thank you to Andrew Rohn for giving me feedback and for being the actual test
pilot who applied ideas from the book in his interviews and code. I appreciate
our shared values.

And another big thanks to the following early adopters of this book who I
had the pleasure to either meet in person or to talk to over Skype or phone:
Paul DeFilipi, Jon Lu, Kevin Zou, John Jacecko, Ronald Hernandez, Forrest
Zhao, Fayyazuddin Syed, Will Lundy, Kurt Walker, Yusuke Kawanabe, Alex
Qin, Natalia Chodelski, Sabita Samal, and Santi Gracia. Your feedback was
invaluable!

I’d also like to thank the editor I collaborated with, Adaobi Obi Tulton. It was
a pleasure and a breeze working with you.

ix

http://artemij.com/
http://andrewrohn.com/
http://serendipity23editorial.com

Finally, I want to acknowledge you, the reader: Thank you for selecting this
book. I hope it will help you in your development and job search.

x

Contents

Preface iii

Foreword v

Testimonials vii

Acknowledgments ix

Change Log xiii

1 Intro 1

1.1 Who am I? . 2

1.2 Structure of this book . 2

1.2.1 Step One: Figure Out What the Big Picture Is 3

1.2.2 Step Two: The Interview Game 3

1.2.3 Step Three: Learn the Fundamentals 3

1.2.4 Step Four: Get Productive with Networking 3

1.2.5 Step Five: Learn How to Store Data 4

1.2.6 Step Six: Go Crazy Responsive with UI Layouts . . . 4

xi

1.2.7 Step Seven: Beyond MVC: Design Patterns, Architec-
ture, FRP, and Dependencies Management 4

1.3 Bonus Content . 4

2 Step One: Figure Out what the Big Picture Is 7

2.1 What is an iOS application and where does your code fit into it? 8

2.2 Patterns and Layers . 12

2.2.1 Storage Layer . 12

2.2.2 Service Layer . 13

2.2.3 UI Layer . 14

2.2.4 Business Logic Layer 14

2.3 Zooming Out . 16

2.4 Zooming In . 16

2.5 Conclusion . 16

3 Step Two: The Interview Game. 19

3.1 Before The Interview . 19

3.1.1 Job Search . 20

3.1.2 Figure out what team/company size you want to work
with . 21

3.1.3 Marketing . 23

3.1.4 Preparation (Know Your Shit!) 27

3.2 At The Interview . 27

3.2.1 Phone Intro . 28

3.2.2 Phone and/or Skype/Hangout/Voip Interview 28

xii

3.2.3 Onsite Interview . 29

3.2.4 Salary Negotiation Interview 30

3.3 Importance of Soft Skills . 30

3.4 Keep Track of Progress . 31

3.5 Conclusion . 31

4 Step Three: Learn the fundamentals 33

4.1 What is let and var in Swift? 34

4.2 What is Optional in Swift and nil in Swift and Objective-C? . 35

4.3 What is the difference between struct and class in Swift?
When would you use one or the other? 37

4.4 How is memory management handled in iOS? 38

4.5 What are properties and instance variables in Objective-C and
Swift? . 39

4.6 What is a protocol (both Obj-C and Swift)? When and how is
it used? . 41

4.7 What is a category/extension? When is it used? 42

4.8 What are closures/blocks and how are they used? 43

4.9 What is MVC? . 44

4.10 What are Singletons? What are they used for? 45

4.11 What is Delegate pattern in iOS? 46

4.12 What is KVO (Key-Value Observation)? 47

4.13 What does iOS application lifecycle consist of? 47

4.14 What is View Controller? What is its lifecycle? 51

4.15 Conclusion . 54

xiii

5 Step Four: Get Productive with Networking 55

5.1 What is HTTP? . 56

5.2 What is REST? . 58

5.3 How do you typically implement networking on iOS? 59

5.4 What are the concerns and limitations of networking on iOS? . 60

5.5 What should go into the networking/service layer? 61

5.6 What is NSURLSession? How is it used? 63

5.7 What is AFNetworking/Alamofire? How do you use it? 64

5.8 How do you handle multi-threading with networking on iOS? . 66

5.9 How do you serialize and map JSON data coming from the
backend? . 67

5.10 How do you download images on iOS? 69

5.11 How would you cache images? 70

5.12 How do you download files on iOS? 71

5.13 Have you used sockets and/or pubsub systems? 72

5.14 What is RestKit? What is it used for? What are the advantages
and disadvantages? . 72

5.15 What could you use instead of RestKit? 74

5.16 How do you test network requests? 75

5.17 Conclusion . 75

6 Step Five: Learn How to Store Data 77

6.1 What is the storage layer for in iOS applications? 78

6.2 What can you use to store data on iOS? 79

6.3 What is NSCoding? . 81

xiv

6.4 What is NSUserDefaults? . 81

6.5 What is Keychain and when do you need it? 82

6.6 How do you save data to a disk on iOS? 82

6.7 What database options are there for iOS applications? 83

6.8 How is data mapping important when you store data? 85

6.9 How would you approach major database/storage migration in
your application? . 87

6.10 Conclusion: . 88

7 Step Six: Go crazy responsive with UI layouts 89

7.1 What are the challenges in working with UI on iOS? 91

7.2 What do you use to lay out your views correctly on iOS? . . . 92

7.3 What are CGRect Frames? When and where would you use
them? . 93

7.4 What is AutoLayout? When and where would you use it? . . . 94

7.5 What are compression resistance and content hugging priorities
for? . 95

7.6 How does AutoLayout work with multi-threading? 96

7.7 What are the advantages and disadvantages of creating Auto-
Layouts in code versus using storyboards? 96

7.8 How do you work with storyboards in a large team? 97

7.9 How do you mix AutoLayout with Frames? 98

7.10 What options do you have with animation on iOS? 98

7.11 How do you do animation with Frames and AutoLayout? . . . 99

7.12 How do you work with UITableView? 100

xv

7.13 How do you optimize table views performance for smooth, fast
scrolling? . 101

7.14 How do you work with UICollectionView? 101

7.15 How do you work with UIScrollView? 102

7.16 What is UIStackView? When would you use it and why? . . . 103

7.17 What alternative ways of working with UI do you know? . . . 103

7.18 How do you make a pixel-perfect UI according to a designer’s
specs? . 104

7.19 How do you unit and integration test UI? 104

7.20 Conclusion . 105

8 Step Seven: Beyond MVC. Design Pattens, Architecture, FRP, and
Dependencies Management. 107

8.1 What design patterns are commonly used in iOS apps? 108

8.1.1 MVC . 109

8.1.2 Singleton . 109

8.1.3 Delegate . 109

8.1.4 Observer . 109

8.2 What is MVC? . 110

8.3 What is MVVM? . 112

8.4 What are the common layers of responsibility that an iOS ap-
plication has? . 116

8.4.1 UI Layer . 116

8.4.2 Service Layer: . 117

8.4.3 Storage Layer: . 117

xvi

8.4.4 Business Logic Layer: 118

8.5 What are SOLID principles? Can you give an example of each
in iOS/Swift? . 119

8.5.1 Single Responsibility Principle 119

8.5.2 Open/Closed Principle 120

8.5.3 Liskov Substitution Principle 121

8.5.4 Interface Segregation Principle 121

8.5.5 Dependency Inversion Principle 126

8.6 How do you manage dependencies in iOS applications? 129

8.7 What is Functional Programming and Functional Reactive Pro-
gramming? . 131

8.8 What are the design patterns besides common Cocoa patterns
that you know of? . 132

8.8.1 Factory Method . 133

8.8.2 Adapter . 135

8.8.3 Decorator . 138

8.8.4 Command . 140

8.8.5 Template . 142

8.9 Conclusion: . 145

9 Bonus Chapter: Storage Evolution (AKA You Don’t Always Need
Core Data!). 147

9.1 Storage Layer . 148

9.2 Typical tools Used for Persistence in the Storage Layer 148

9.3 In-memory arrays, dictionaries, sets, and other data structures . 149

xvii

9.4 NSUserDefaults and Keychain 151

9.4.1 NSUserDefaults . 152

9.4.2 Keychain . 155

9.5 File/Disk Storage . 156

9.6 Core Data . 160

9.6.1 Going the NSManagedObject Subclass Route 161

9.6.2 Going the Data Mapping/Serialization Route 161

9.7 Storage Layer Plays Dual Role: Persistence and Data Mapping
and Serialization . 166

9.8 Switching Storage . 167

9.9 FRP in the Storage Layer. 167

9.10 Be Practical in Your Storage Layer Implementation and Decisions168

9.11 Conclusion . 168

10 Outro 169

xviii

Change Log

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres (somewhat)
to Semantic Versioning.

[1.0.6] (current) - 2018-9-10

Added:

Changed:

• all the code samples shipped with the book (see ios_interview_guide_v_1_0_6_code_samples
zip file) were rewritten with Swift 4 and made more idiomatically “Swifty”.

• this changelog moved to after the table of contents

Removed:

[1.0.5] - 2017-12-13

Added:

Changed:

• fixed and clarified struct inheritance in Fundamentals chapter.

xix

http://keepachangelog.com/en/0.3.0/
http://semver.org/

• fixed storyboards mention in What are the advantages and disadvantages
of creating AutoLayouts in code versus using storyboards?
question in UI chapter.

• fixed minor typos

Removed:

[1.0.4] - 2017-08-16

Added:

• clarified how optionals work with lets

• clarified usage of scope defining lets

[1.0.3] - 2017-06-28

Changed:

• Fixed missing apostrophes in PDF version of the book

[1.0.2] - 2017-06-01

Changed:

• Fixed minor typos

[1.0.1] - 2017-05-28

Changed:

• Fixed minor typos

xx

[1.0.0] - 2017-05-28

Added:

• Outro and Acknowledgments

[0.8.3] - 2017-05-24

Added:

• Added about the author info

[0.8.2] - 2017-05-23

Changed:

• Fixed and improved layout in all the chapters

[0.8.1] - 2017-05-15

Changed:

• Chapter 1 Intro (edited for typos and structural improvements).

• Chapter 2 Step One: Figure Out what the Big Picture Is (edited for typos
and structural improvements).

• Chapter 5 Step Four: Get Productive with Networking (edited for typos
and structural improvements).

• Chapter 6 Step Five: Learn How to Store Data (edited for typos and
structural improvements).

xxi

• Chapter 7 Step Six. Go crazy responsive with UI layouts (edited for typos
and structural improvements).

• Chapter 8 Step Seven: Beyond MVC. Design Pattens, Architecture, FRP,
and Dependencies Management. (edited for typos and structural im-
provements).

• Chapter 9 Bonus Chapter: Storage Evolution (AKA You Don’t Always
Need Core Data!). (edited for typos and structural improvements).

[0.8.0] - 2017-04-30

Changed:

• Chapter 1 Intro was restructured.

• Chapter 2 Step One. Figure out what the big picture is. was restructured.

Added:

• Chapter 6 Step Five. Learn how to store data. (unedited)

• Added cross link references to chapters and questions/answers within
chapters for easy navigation

Removed:

• all the TODOs, notes, and unfinished content was removed from chapters

• overflowing chapter title at the top of each page was removed

xxii

[0.7.1] - 2017-04-10

Changed:

• Chapter 3 Step Two. The Interview Game. (edited for typos and struc-
tural improvements).

[0.7.0] - 2017-03-27

Added:

• Chapter 8 Step Seven. Beyond MVC. Design Pattens, Architecture, FRP,
Dependencies Management (unedited)

[0.6.0] - 2017-01-21

Added:

• This CHANGELOG

• Chapter 3 Step Two. The Interview Game. (unedited)

[0.5.0] - 2017-01-02

Added:

• Chapter 4 Step Three. Learn the fundamentals (unedited)

xxiii

[0.4.0] - 2016-11-14

Added:

• Initial pre-release version containing 4 chapters (unedited)

xxiv

Chapter 1

Intro

Ok, here we are. As developers we love our craft, and even more, we love to
be paid for the work we do. That is why we get jobs. And to get a better job
we need to go on those notorious interviews. . .

Do you hate them as much as I do? It takes so much time to prepare for them,
and you still can’t guess what crazy thing they’ll ask you on the interview,
making you sweat and jitter.

If so read on. This is a no BS, down to business, pragmatic guide on how to get
ready for your iOS interview. Whether you’re applying for a senior position or
just starting out as a junior, this guide will help you get over your anxiety and
actually give you concrete steps and guidance on what you need to know as a
modern iOS developer. It will give you an overview of what there is to learn on
the iOS platform and systematize that stuff so that there’s clear structure and
guidance on what you need to learn next.

The best way to not be nervous and to nail your interviews after all is to actually
know more and better than your interviewer. If you want to know “advanced
stuff,” then this is the guide for you!

1

1.1 Who am I?

My name is Alex. I’m a fellow developer like you. I’ve been working with iOS
for over six years, built over twenty apps, code reviewed thousands of lines
of code, mentored several developers, and interviewed a lot of developers. I
know all the struggles you go through with iOS development and I know what
pitfalls there are. I founded Smart Cloud. I blog at http://www.sm-cloud.com/
and co-host Inside iOS Dev Podcast. And you can find me on LinkedIn here.

1.2 Structure of this book

This book is broken down into a series of seven steps that you can follow to get
a good grasp on what there’s to learn about the iOS platform and what kinds
of questions you could be asked on technical iOS interviews. Questions are
grouped into logical layers of responsibility which we will talk about more
in Chapter 2 Step One: Figure Out What the Big Picture Is, and we will talk
in more details about the architectural aspects of it in Chapter 8 Step Seven:

2

http://smartcloud.io/
http://www.sm-cloud.com/
http://insideiosdev.com/
https://www.linkedin.com/in/alexvbush/

Beyond MVC: Design Pattens, Architecture, FRP, and Dependencies Manage-
ment.

1.2.1 Step One: Figure Out What the Big Picture Is

Step one is covered in Chapter 2. As mentioned previously, this is where we
will talk about the big picture of what there is to learn about iOS.

1.2.2 Step Two: The Interview Game

In this step we will talk about everything non-technical in the interview process.
Chapter 3 outlines a typical interview process, covering phone screening, onsite
interviews, resumes, and more. This chapter will also give you some tips on
how to market and position yourself so that you stand out from the rest of the
candidates.

1.2.3 Step Three: Learn the Fundamentals

Regardless of what position you’re applying for, fundamentals such as memory
management and Swift reference and value type are important. Chapter 4 will
cover those questions.

1.2.4 Step Four: Get Productive with Networking

In Chapter 5 we will talk about one of the most common tasks you’d do on iOS,
talk to external APIs and services. This chapter covers questions about HTTP
requests, Alamofire, JSON parsing, and so on.

3

1.2.5 Step Five: Learn How to Store Data

Chapter 6 covers everything storage and persistence. There are multiple ways
you could store data on iOS and in some scenarios certain solutions are better
than others. You’ll find answers to questions ranging from NSUserDefaults
to Core Data in this chapter.

1.2.6 Step Six: Go Crazy Responsive with UI Layouts

This step covers something that we as iOS developers arguably work on the
most - the user interface. Chapter 7 will walk you through interview questions
about AutoLayout, Frames, storyboards, UITableView, and so on.

1.2.7 Step Seven: Beyond MVC: Design Patterns, Architec-
ture, FRP, and Dependencies Management

Good architecture is important on every project. Chapter 8 covers interview
questions about design patterns and architecture. We will discuss things rang-
ing from MVC and MVVM to Functional Reactive Programming and SOLID
principles.

1.3 Bonus Content

This book also has a bonus Chapter 9 Storage Evolution (AKA You Don’t Al-
ways Need Core Data!), the contents of which didn’t really fit into the interview
question/answer format of this book. They are more suited for another book.
But things discussed and shown in that chapter, such as storage development
and refactoring using SOLID principles, are nevertheless useful and important
to know. This is why I decided to still add it to this book, because knowing
these techniques could also help you in your interviews.

4

Alright, without further ado, let’s get into it.

5

6

Chapter 2

Step One: Figure Out what
the Big Picture Is

A big picture overview makes it easier to orient yourself. So first things first
- find out what the iOS world is all about overall and what the high-level
overview of what you could possibly be asked about on iOS interviews is. You
can figure out the details later when necessary.

If you build enough apps you’ll start noticing patterns. You’ll see that there are
things you do over and over again in one form or another that are essentially the
same. When that happens, you realize how all apps are similar to each other.
Sure they might differ in looks and what they do for the user, but overall, the
way you build them is the same. Therefore when developers are interviewed
for any iOS position, they will be asked a similar set of questions revolving
around broad iOS topics. The main idea is that interviewers need to figure out
what you know about building iOS apps.

In this chapter, we’ll look at what iOS apps are, where they fit in the iOS
system, the big picture design patterns that emerge out of building iOS apps,
and how you can group and structure interview questions around those topics
to systematize your own learning.

7

2.1 What is an iOS application and where does
your code fit into it?

If you think about it long enough, your typical iOS application is just a giant
glorified run loop. It waits for user input and gets interrupted by external signals
such as phone calls, push notifications, home button press, and other app life
cycle events.

Following is Apple’s diagram of the iOS app life cycle:

It is indeed that simple and straightforward. The app is launched, and then it

8

sits and waits for user input, whether it’s a touch or a home button click to put
the app in the background, or something else.

UIApplication is just an object built around the main() loop to augment it
and give us more usability that calls convenient callbacks to your
UIAppDelegate subclass. Those “convenient” callback methods would be:

• application:willFinishLaunchingWithOptions:

• application:didFinishLaunchingWithOptions:

• applicationDidBecomeActive:

• applicationDidEnterBackground:

• applicationWillResignActive:

• applicationWillEnterForeground:

and everything else that we are used to working with in a typical app delegate.

What you actually do as an iOS app developer is just plug into those callbacks
to run your application’s code and business logic. As soon as you understand
that, you will realize where the line is drawn between your app and Cocoa
Touch code. It is an important distinction to make.

Of course, the reality of day-to-day development is that your code will be very
tightly dependent and coupled to Apple’s iOS frameworks. But nevertheless,
you should do your best to decouple your code from it so that it is more main-
tainable and stays sane over the course of your project’s evolution. Because we
all know that in software development only one thing remains constant, and
that thing is change.

One way to see that for yourself is to create a new single-screen project in
Xcode and strip out everything related to UI (view controllers and window) in
your AppDelegate subclass.

For example, a brand new project’s AppDelegate would look like this:

9

import UIKit

//@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[NSObject: AnyObject]?) -> Bool
{

let storyboard = UIStoryboard(name: "Main", bundle: nil)

let rootViewController = storyboard.instantiateInitialViewController()

self.window = UIWindow(frame: UIScreen.main.bounds)
self.window?.rootViewController = rootViewController
self.window?.makeKeyAndVisible()

return true
}

func applicationWillResignActive(application: UIApplication) {
print("applicationWillResignActive")

}

func applicationDidEnterBackground(application: UIApplication) {
print("applicationDidEnterBackground")

}

func applicationWillEnterForeground(application: UIApplication) {
print("applicationWillEnterForeground")

}

func applicationDidBecomeActive(application: UIApplication) {
print("applicationDidBecomeActive")

}

func applicationWillTerminate(application: UIApplication) {
print("applicationWillTerminate")

}
}

It is very typical to have something like that where you’d either use a storyboard
or create an initial view controller in code. But at the end of the day, what
happens is that you create a UIWindow to be the main window of the UI of
your application and then you create the first view controller that is going to be

10

displayed to the user.

But if you’d remove all that UI code, your application is still going to be a per-
fectly valid iOS app and it’s even going to launch! Heck, even all the callback
methods that the main() loop under the hood sends to us will be received as
they would be with a normal application that has a UI:

import UIKit

//@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[NSObject: AnyObject]?) -> Bool
{

// let storyboard = UIStoryboard(name: "Main", bundle: nil)
//
// let rootViewController = storyboard.instantiateInitialViewController()
//
// self.window = UIWindow(frame: UIScreen.mainScreen().bounds)
// self.window?.rootViewController = rootViewController
// self.window?.makeKeyAndVisible()

return true
}

func applicationWillResignActive(application: UIApplication) {
print("applicationWillResignActive")

}

func applicationDidEnterBackground(application: UIApplication) {
print("applicationDidEnterBackground")

}

func applicationWillEnterForeground(application: UIApplication) {
print("applicationWillEnterForeground")

}

func applicationDidBecomeActive(application: UIApplication) {
print("applicationDidBecomeActive")

}

func applicationWillTerminate(application: UIApplication) {
print("applicationWillTerminate")

}
}

11

Try to run this and you’ll see a black screen instead of any kind of UI but notice
that all the methods like applicationDidBecomeActive and
applicationWillResignActive still call when you click on the home but-
ton and open your app again. The UI is just your app’s code; the system doesn’t
care if you have any or not. It just keeps running its main() loop.

To the iOS system, your app is yet another building block, yet another run/main
loop that can be launched on user demand or when some other event in the
system like push notification or location change happens.

2.2 Patterns and Layers

After you build a few iOS applications of various complexities, one thing you
might start to notice is that there are distinct layers of responsibility in each
app’s codebase. Regardless of whether you’re building an Instagram-like ap-
plication or a mail client or any other kind of app, all of them will be doing one
or more of the following things: HTTP networking, storing data to disk, lo-
cation GPS work, JSON parsing, data serialization, UI composition, resources
and objects coordination, and other tasks.

All of those things in your code can by grouped into the following layers of re-
sponsibility: storage layer, service layer, business logic layer,
and UI layer.

What exactly goes into each layer varies from app to app, but roughly the fol-
lowing things could be placed in each layer:

2.2.1 Storage Layer

The storage layer can be as simple as an array or dictionary of data that holds
models in memory for your app or as complex as a Core Data or custom SQL
ORM solution that can be observed and queried with advanced predicates. The
main responsibility of this layer is to store data for your application and play

12

the role of the “ultimate source of truth” for the rest of your code. Exam-
ples of what goes into this layer could be the following: Core Data, Realm,
NSUserDefaults, KeyChain, Disk File storage, and
in-memory arrays and dictionaries/sets.

We’ll cover interview questions around storage in Chapter 6 Step Five: Learn
How To Store Data

2.2.2 Service Layer

This layer is responsible for all things involving networking and external com-
munication. That could be, as needed by pretty much any app these days, an
HTTP client and a set of accompanying objects that do networking for the app
and connect with the backend JSON API. Or it could be a Bluetooth Low
Energy (BLE) client wrapper code that helps your app communicate and send
or receive data from external Bluetooth devices. Or it could be a socket connec-
tion code that allows your app to subscribe to server events and receive, let’s
say, comments from another chat participant, or some other piece of data. Or it
could be a location service that connects with a device’s GPS delegates and gets
location change updates. You get the picture. The bottom line is that it’s the
code that knows how to work with external interfaces, whether it’s HTTP or
BLE or something else. Also quite often data serialization and mapping (let’s
say from JSON to your custom objects) are included in this layer as well.

We’ll cover interview questions around networking and services in Chapter 5
Step Four: Get Productive with Networking

13

2.2.3 UI Layer

The UI layer is responsible for drawing things on the screen. This is all the
stuff that naturally goes into that bucket like UIView subclasses, Autolayout,
Table Views, Buttons, Collection Views, and Bar Buttons. Two
other things that also belong to this layer that might not be obvious are View
Controllers and View Models. View Controllers are suppose to do
just that, control the view. View Models are complimentary objects that help
with decluttering and decoupling views from other layers of responsibility. Re-
member the key to a happy and healthy iOS codebase is a skinny controller.

We’ll cover interview questions around UI and layout in Chapter 7 Step Six:
Go Crazy Responsive with UI Layouts

2.2.4 Business Logic Layer

In this layer are objects that are responsible for the actual application’s business
logic, objects that use components of other layers to achieve results and do the
work for the user. Coordinators that use HTTP service objects in conjunction
with storages to orchestrate receiving data from backend APIs and persisting
it to Core Data would be one example.

Another example of what goes into this layer could be a manager object that
takes care of token encryption and saving to keychain using keychain storage
and some kind of encryption service in it.

The main idea is that this layer helps us keep services, storages, and other layers
decoupled from each other and tell them (aka orchestrate and coordinate) what
to do to achieve results. This layer is what actually makes your application
useful.

This is how the layers structure looks overall:

14

You might be wondering why you’re seeing this particular layers breakdown.
It is inspired by the Single Responsibility Principle (SRP), one of the SOLID
principles (which stands for Single Responsibility, Open/Closed, Liskov Sub-
stitution, Interface Segregation and Dependency Inversion). We’ll discuss it in
more detail in Chapter 8 Step Seven: Beyond MVC: Design Patterns, Archi-
tecture, FRP, and Dependencies Management

15

2.3 Zooming Out

So what does all of this mean for you and your interview prep? Layers in iOS
codebases that we just discussed essentially group all the things that you should
know as an iOS developer. That effectively means that when you prepare for
interview questions each one of those questions could be placed in a respective
group according to the purpose of the thing the question is asking about.

This is how this book is structured - instead of randomly preparing for questions
that were put together in some arbitrary way, we instead will systematically
take a look at each layer and the things you need to know there.

2.4 Zooming In

Now, when you know overall what there is to learn on iOS, you could go
through each step and chapter one by one, reading questions and answers in
order. Or you could skim them and skip the questions you already know an-
swers to and are familiar with and instead focus on those areas where you’re
lacking.

Regardless of the way you approach it, systematizing your learning and know-
ing overall where you are in grasping iOS should give you a framework to work
in and give you more confidence on the interviews themselves.

2.5 Conclusion

In this chapter we looked over the big picture of what there is to learn on iOS.
We now have a plan of attack for prepping for questions about each layer of
responsibility a typical iOS application has.

In the next chapter we are going to look at what a typical interview process
consists of and how you can increase your chances to get noticed and get invited

16

to be interviewed.

17

18

Chapter 3

Step Two: The Interview
Game.

In this chapter I’ll outline a typical interview process from end to end. It will
start with advice on searching for a job or receiving invitations from recruiters
(or both), and then guide you through the interview itself before finishing with
some advice on salary negotiation. This chapter isn’t going to be as tech heavy
as others in this book. Instead it focuses on stuff you need to know around
software development craft such as marketing (yes, as a developer you need to
be able to market and position yourself well to get a better job), negotiation,
and soft skills.

3.1 Before The Interview

Your success in landing your dream job starts even before you get your foot in
the door at the company you are applying to. There are three things you need
to do before you go on an interview: Job Search, Marketing, and Knowing
Your Shit (a.k.a. Preparation).

19

3.1.1 Job Search

Everything starts with a job search. There are several ways you can do this
and they are not mutually exclusive. You can apply for jobs through various
job boards and company websites, talk to your friends, get referrals through
word-of-mouth, and work with recruiters.

Now, let’s look at these job search methods in more detail:

Job Boards and Company Websites:

The most straightforward approach to the job search is to put together a resume
and portfolio and apply for positions posted on the internet. This includes
online job boards and listings on Stack Overflow, LinkedIn and other profes-
sional networking and recruitment websites. There is nothing wrong with this
approach and it’s a perfectly fine way to land a job. It is important, however, to
have a good resume that makes you stand out. We’ll talk more about that later
in this chapter.

Another important thing to know about applying for jobs through job boards is
that you cannot win by playing a numbers game. Don’t blast the same resume
and cover letter to every position and company you can find. To stand out you
need to tweak them so that they specifically suit each job you are applying for.

Referrals/Friends:

Having a friend or acquaintance refer you for a position is another good way
to land a job. Ask everyone you know if they’ve heard of anyone who needs a
developer with your skill set. You might be surprised how close open positions
are to you. Because you’ll get points by proxy through the person that referred
you, your resume is less important with this approach but you should still make
it impressive.

Recruiters:

Oh, recruiters. No one likes them but they’re actually very useful in landing a
job After you get over the stereotype and start actually working with a recruiter,
you would find that they do a great job of lifting the burden of searching for

20

positions off your shoulders. After all, they are on your side. Sure, they get
a nice payout when you land a job. It’s in their interests, though, to get you
the best job they can because if you get a big salary, they can negotiate with
your new employer for a bigger cut. Give them a good resume to use and make
adjustments to it if they ask for them. Also, tell them what you are ideally
looking for and your salary preference. Then sit back and relax and let them
source new gigs for you (if they are any good, of course).

Always remember, too, that if the recruiter you are working with is not produc-
ing results, don’t be discouraged. Try a different one and keep searching for
jobs on your own.

3.1.2 Figure out what team/company size you want to work
with

Team size matters. It should influence your expectations as a developer and
will affect the way an interview is conducted. When you apply for a position in
a company, you need to know how big the engineering team in that company
is and what their culture is like. Then you’ll know the kinds of questions to
expect on your interview.

Small Company:

If they are a small startup/company (0-10 people in the engineering team) with
“hackish” culture then they’ll most likely ask you about prototyping things
and will expect you to “build shit quickly” disregarding quality and praising
the speed. They won’t care much about good architecture and scalability or
performance at early startup stage they care more about “time to market” which
means quickly putting together something that works most of the time and
shipping it. The expectation on you as a developer (especially if you’ll be the
sole iOS developer on the team) would be that you can deliver apps end to
end - from the very first line of code down to the release submission to the
app store with all the necessary provisioning profiles etc. You need to be able
to figure things out quickly. Most likely you won’t be working with legacy

21

codebases here, all the projects are apps started from scratch, so called “green
field” projects.

Large Company:

Interviewing at a large company (50+ people in the engineering team) you will
probably be asked generic computer science questions and sometimes inter-
viewers won’t even go into iOS-specifics. Big organizations have typically
already figured out what their product is and are scaling product and market-
ing efforts. For you, this means that the interview is likely to revolve around
hypothetical problem-solving and scalability. Large organizations care about
the performance impact of file downloads, network requests, and other compu-
tations made on the client side. Unlike small organizations, there most likely
will be time for doing optimizations. Timelines in bigger organizations are
longer and typically they are looking for people to fill specialized roles. You’ll
often find that large organizations like Facebook or LinkedIn are looking for
developers (and even entire teams) to focus on things like UI performance, net-
working download speeds or other deeper specializations in iOS software that
smaller companies can’t spend time on. Also expect to be working with legacy
codebases.

Mid-size Company:

When applying to a mid-size company (10 - 50 people), you should expect a
mix of what small companies need and big companies expect. Mid-size com-
panies are not big enough to spare resources on people who specialize in things
like performance but aren’t small anymore to move super fast and risk breaking
things. They’ll expect you to be a well-rounded and balanced developer. As
with a small company, in most cases you will be expected to build and ship
things end-to-end but you will also have to keep an eye on performance, scal-
ability, and architecture for future maintainability. If you interview at a good
mid-size company, the questions are likely to encompass all of these areas as
well as cover broad iOS, architecture and CS knowledge.

I personally find teams at mid-size companies to be the most challenging and
interesting to work with because they demand more than simply building an
MVP. They need someone whose talents go beyond shaving microseconds off

22

networking performance or scrolling in table views.

The main message here is that you should figure out what type of company and
team you’d like to join ahead of time and prepare for your interview accord-
ingly. Regardless of your choice, though, the advice in the following chapters
about interview questions on UI, Networking, Storage, and other technical iOS
topics will help you prepare for interviews at any company regardless of its
size.

3.1.3 Marketing

This is something that most developers neglect. I know the word “marketing”
can sound sleazy and unappealing. Yet, when you’re aiming at your dream job,
you need to stand out from the crowd if you want to get a foot in the door.

The way to do this is through marketing yourself with your resume, your blog,
your GitHub profile, and other links and resources that showcase you as a great
developer and an appealing candidate.

Resume

There’s a notion that resumes are overrated and that some companies don’t
even look at them. Ignore it. There are still plenty of HR personnel and other
recruitment gatekeepers that filter candidates out based on resumes so it makes
sense to have a good one.

The main purpose of a resume is to briefly show that you have relevant experi-
ence for the position you’re applying for. It won’t get you the job though, you
will still have to interview but it will increase your application response rate.

HR departments and other people involved in hiring devs typically get hundreds
of resumes a day and have very limited time to spend on each one. Therefore,
keep your resume under two pages and don’t overly complicate it with long,
smart-sounding words and corporate BS. Again, people who look at your re-

23

sume don’t have much time, so make it easier for them and keep it short and
concise. They’ll appreciate that.

If you’re applying to a US company, your resume structure should probably be
as follows (sections going from top to bottom):

1. Your name and contact information, such as e-mail and phone number,
should go at the very top. Below these you should add links to your blog
and profiles on GitHub, Stack Overflow and anywhere else that show-
cases you as a great developer. Don’t overdo it by including more than a
few, though.

2. Your work experience. Include the names of companies you’ve worked
at and your positions along with the dates of your employment. Also,
add a very short (one or two sentence) description of what you did along
the lines of, “I was working on the main iOS app and successfully imple-
mented integration with internal JSON API”. You can also mention one
or two big technologies or architectural concepts you used at each job.

3. Your personal projects. This would include any relevant interesting stuff
you’ve done aside from paid work.

4. Your education. State the name of the college or university you went to
and what you majored in but nothing else. Employers won’t really care
about your education unless they are Google, or Amazon, or a similar
size company.

5. Optionally, you can also have a section with any special expertise you
have that might be relevant. In my resume, for example, I have Func-
tional Reactive Programming (FRP) and SOLID principles. This section
is not essential and can be omitted if it makes your resume too long or
complicated.

Don’ts:

Do NOT include the following things in your resume:

24

• photo of yourself

• marital status

• date of birth

• career objective

It’s unfortunately true that by excluding the first three of these from your re-
sume you can avoid sources of negative bias. If you represent a minority group,
are of a certain age or have a some kinds of social status, it might influence a
recruiter’s decision to consider you as a candidate. This is a complicated issue
that could be the topic for another book so simply take my word for it and don’t
include these things in your resume.

As for stating your career objective, it’s just filler that no-one cares about in a
resume. If an employer is interested, they’ll ask you at the interview.

References:

Don’t include references in your resume but have a few available. Offer to
provide them upon request.

Cover Letter

Cover letters are important. When you apply directly for jobs, the cover letter
will be the first impression you make. It can be a deal breaker or a deal maker.
If a company sees that you copy-and-pasted a form letter, they could take that
to mean you don’t care about joining them specifically. If it looks like you’ve
taken the time to craft a cover letter for the company and the position you’re
applying for, you’ll greatly increase your chances of getting an interview. In
more general terms, keep your cover letter succinct, to the point and, for God’s
sake, spell check!

Writing a good cover letter means doing your research. Unless you already
know everything you need to know about the company you’re applying to,

25

Google it a lot. Find out what their team size is and what tech they work
with. Read any technical and product blogs they have. Most importantly of all,
research and, if possible, try out the product they make. You can’t imagine how
many developers are disregarded for jobs simply because they show no interest
in the products made by the company they’re applying to.

Github

Your code speaks more loudly about you than anything else. GitHub is the
de facto standard for code version control nowadays. Not only should you
know how to use git well enough, you should also have an up-to-date GitHub
profile.

For some companies GitHub is the main tool used for filtering out applicants
for developer jobs. Having an active GiHub account shows that you’re a part
of the software developer tribe and active in that community.

Your GitHub profile should have a very short description of what you can do
and showcase what you’ve worked on. Potential employers find it handy to
go to someone’s GitHub profile and see their code before deciding whether to
invite them for an interview.

In that rare case where the code you wrote can’t be made public because of
a non-disclosure agreement (NDA) or something similar, try to get a few code
samples together that you can share. We’ll discuss this more in the next section.

Code Samples

Good code samples that are on a GitHub profile or have been included in your
application often make potential employers more inclined to send out an in-
terview invitation. If you can’t share much in your GitHub profile due to an
NDA, ask your previous employers or clients if you can share only a portion of
the code you wrote. That could be a set of classes that constitute a feature that
you built, networking code you’ve written, or something similar. Try to find

26

something that shows complete end-to-end coding for a feature you’ve built
and reassure the owner of the intellectual property that you won’t reveal too
much about the rest of the application.

Blog

Your blog can also help you stand out. If you regularly blog, it’s easier for
others to put you in a bucket of professionals. Share everything you learn. If
you’ve just read an article about MVVM and tried it in your app, blog about it.
If you found a new cool pod that helps with animation, blog about that. Just
like your GitHub profile, your blog helps communicate your skills and your
value to potential employer before you even meet the person who’s going to
interview you. Trust me, there’s a special feeling you get when an interviewer
casually says that they read something on your blog that they found useful or
they want to talk about. Use blogging to your advantage!

3.1.4 Preparation (Know Your Shit!)

Aside from the job search and marketing, the most important thing you need to
do before every interview is to prepare and learn as much iOS stuff as you can.
Tech skills and soft skills are actually what you’ll need day-to-day on your job
so you’ve got to be ready. That is what the rest of this book is about. Specific
questions that you should prepare for on UI, Storage, Networking and other
things that you’ll need to know are broken down in subsequent chapters. Read
them.

3.2 At The Interview

When you’re interviewing with a company you’ll actually have multiple inter-
views at different stages of the process. Typically these break down into the

27

following steps: phone intro, phone/skype/hangout/voip interview, onsite
interview, and optional negotiation interview.

3.2.1 Phone Intro

The phone intro is the first thing you’ll have after company you applied to ex-
presses interest in you. Its purpose is to allow you and the company to get
acquainted and see if your mutual goals are aligned. Generally speaking, a
company will try to sell themselves to you as a great place to work and si-
multaneously gauge your level of excitement and eagerness to work with them
or in the field they specialize in. Don’t stress too much about this interview.
There won’t be any technical questions and you’ll only be expected to briefly
talk about your previous experience. Have a quick and short summary of it in
mind and don’t get into lengthy details about what you’ve done before. You
should have a few questions ready about the company interviewing you. They
wouldn’t want to hire someone who’s not interested in them. Typically, this
interview takes only 15 to 30 minutes.

3.2.2 Phone and/or Skype/Hangout/Voip Interview

A second interview can take various forms. Typically it is a technical interview
that could either be purely Computer Science-oriented (i.e., about algorithms,
data structures, etc.), or iOS-oriented (iOS tech questions with short answers
to gauge your overall knowledge). It might also have a mix of both. These in-
terviews can be either over the phone, so you’d be expected to just talk, or they
could be conducted via Skype, Google Hangouts or another VoIP service. You
might be asked to use VoIP so you can share your screen and the interviewer
can see what you’re typing while you solve a problem they’ve given you.

These interviews are typically not as crazy hard as you might think and they
usually take from 30 minutes to an hour. If they take longer than this that can
be a good sign.

28

Again, get ready for the technical questions by reading the chapters of this
book.

It’s okay to ask the interviewer to repeat a question that you didn’t understand.
If they give you a problem to solve, talk through your solution before typing
it out. Usually, the interviewer just wants to understand how you think rather
than see you get the right answer of the bat.

I have one other important piece of advice if you are asked to interview via
a VoIP service: ensure that you have a stable internet connection (preferably
through a cable because WiFi is unreliable) and a quiet spot to talk for an hour
because you don’t want the interview to get interrupted or cut off in the middle.

3.2.3 Onsite Interview

Onsite interviews are generally the hardest and longest. The interview style,
questions, organization, and other details will vary from one company to an-
other depending on their size and culture. In general, though, expect there to
be at least one whiteboarding session (with or without CS and iOS questions,
architectural discussion and problem solving), one or more pair programming
sessions or a mix of each of these. Again, questions covered in the rest of this
book will help you prepare.

Dress well to make a good impression, even if you’re going to a hip startup in
Silicon Valley

Even if you’ve asked questions in a previous interview about the company and
the team that you could be working with, prepare more. You will be given a
chance to ask them and they will show the extent of your interest in working
specifically for the company that is interviewing you.

Whiteboarding

Whiteboarding can be intimidating for people but don’t get discouraged. It’s
not an exam and you’re not in school anymore. What interviewers really want

29

to see is how you tackle problems and how well you know iOS stuff. Take a
deep breath, be calm, and talk your solutions through. Ask questions if you
need to clarify something.

Pair Programming

Pair programming is one of the best ways to gauge a candidate’s level of ex-
perience and general cultural fit. That’s because it’s the closest thing possible
to what the interviewee will actually be doing on the job if hired. The same
advice applies here as with other types of interviews: be calm, don’t hesitate
to ask questions, and talk your solutions through because your interviewer will
want to know how and why you’ve decide to write a particular piece of code
before you do it.

3.2.4 Salary Negotiation Interview

A salary negotiation interview sometimes happens right after your on-site in-
terview or might occur later over the phone or VoIP. Negotiating is usually the
hardest thing for developers to do and many simply agree to whatever is of-
fered. There’s a lot of benefit to be gained from discussing salary, though. Lis-
ten to Ruby Rogues Podcast Episode #274 for an at-length discussion of why
it’s important and what tactics will help you do it successfully. John Sonmez
also covers salary negotiation in his great book Soft Skills.

If you work with a recruiter, they should take care of this part for you.

3.3 Importance of Soft Skills

So called “soft skills” are a set of your skills such as people skills, communi-
cation skills, productivity skills, organizational skills, attitudes and emotional
intelligence (EQ). In other words, anything that is not directly related to, but

30

https://devchat.tv/ruby-rogues/274-rr-fearless-salary-negotiation-with-josh-doody
https://www.amazon.com/Soft-Skills-software-developers-manual/dp/1617292397

is just as important as, your “hard skills” or technical knowledge. Sometimes
teams will prefer someone who is a great communicator over a coding genius
who can’t get along with others. So, in your interviews be at your best and
smile to make a good impression on the people you’re interviewing with

Read that John Sonmez book for more on this topic.

3.4 Keep Track of Progress

Finally, I highly recommend to have a Trello board for your job search to keep
track of progress, e-mails, and phone calls about the jobs you’re interviewing
for.

3.5 Conclusion

In this chapter we went through the overall structure of the interview process.
It should be easier for you to handle now that you know what to expect. The
rest of this book covers the technical knowledge you will need to be calm and
confident enough in your interviews to crush them!

31

https://www.amazon.com/Soft-Skills-software-developers-manual/dp/1617292397
https://trello.com/

32

Chapter 4

Step Three: Learn the
fundamentals

Fundamental iOS questions are the questions about things that you’ll be 100%
working with day-to-day as an iOS developer, such as memory management,
protocols, extensions, let/var, optionals, KVO and delegates. Depending on
the position you’re applying for (junior, mid, senior, etc.) you’ll either have
a lot of these questions or just a few but expect them in one form or another.
These questions can be tedious and boring for an experienced developer but it’s
always good to brush up your skills.

Interview questions covered in this chapter:

• What is let and var in Swift?

• What is Optional in Swift and nil in Swift and Objective-C?

• What is the difference between struct and class in Swift? When would
you use one or the other?

• How is memory management handled on iOS?

• What are properties and instance variables in Objective-C and Swift?

33

• What is a protocol (both Obj-C and Swift)? When and how it is used?

• What is a category/extension? When is it used?

• What are closures/blocks and how are they used?

• What is MVC?

• What are Singletons? What are they used for?

• What is Delegate pattern on iOS?

• What is KVO (Key-Value Observation)?

• What does iOS application lifecycle consist of?

• What is View Controller? What is its lifecycle?

4.1 What is let and var in Swift?

This is a basic Swift question that might open up opportunities for deeper dis-
cussions around language semantics and mutability/immutability in languages
in general and their respective advantages and disadvantages. Be ready to go
in either direction.

Expected answer: The let keyword is used to declare a constant variable and
the var keyword is used to declare a variable. Variables created with these are
either references/pointers or values. The difference between them is that when
you create a constant with let, you have to give it a value upon declaration
(or within the calling scope) and you can’t reassign it. In contrast, when you
declare a variable with var, it can either be assigned right away or at a later
time or not at all (i.e. be nil).

This is a fundamental Swift thing that you should be familiar with. In Objective-
C everything is dynamic and can be nil. Also, nil can receive messages

34

without breaking everything (i.e. throwing an exception). In Swift, though,
you have to be very explicit about what you are declaring.

At the end of the day, let, var, nil, and Optionals (as you’ll see in the
next section) help define how you handle state in your apps. Swift forces you
to be more explicit about it.

4.2 What is Optional in Swift and nil in Swift and
Objective-C?

This is another fundamental Swift question that you should be expecting in
iOS interviews. Different from Objective-C treatment of nils and introduc-
tion of Optionals makes Swift development style in some cases dramatically
different from Objective-C. Be ready to talk at length about the big picture ar-
chitectural implications of this and how it is going to affect how you write your
code.

Expected answer: In Objective-C nil used to be a very handy “value” for
variables. It typically meant an absence of value or simply “nothing”. You
could send a message to a nil and instead of your app blowing up with an
exception it would simply ignore it and do nothing (or return nil). With the
introduction of let and var in Swift, however, it became apparent that not all
constants and variables can be defined and set at the time of declaration. We
needed to somehow declare that a variable has not been determined yet and that
it potentially could have a value or no value. That’s where Optional comes
into play.

Optional is defined with ? appended at the end of the variable type you
declare. You can set a value to that variable right away or at a later time or not
set one at all. When you use Optional variables you have to either explicitly
unwrap them, using ! at the end of the variable to get the value stored in it or
you could do a so-called Optional Binding to find out whether an Optional
contains a value. To do that you’d use a

35

if let unwrappedOptional = someOptional {
// your code here

}

construct.

Optionals can be used with constants (lets) only if they were give a value
right away (whether it’s nil or an actual value). In general a constant has to
be defined at the time of its declaration and therefore it has a value and is not
an Optional.

In Swift, unlike in Objective-C, sending messages to nil causes a runtime
exception. There is, though, a way of sending a message to an Optional in
Swift and if the value is a nil, it will just ignore the message and return nil
instead of raising an exception. This is much like the old Objective-C behavior
and allows you to do method chaining calls. If one of the Optional values in
the call sequence is nil, the whole chain will return nil.

Optionals make Swift lean more towards the functional side of programming
languages partially mimicking the Maybe concept of Haskel and similar lan-
guages. Ultimately, just like let, var, and nil, Optional is a helpful con-
struct that forces you to be more mindful of how you handle the state of your
applications.

In general, you should use nil and consequently Optionals to represent an
absence of value as little as possible. Every time you declare an Optional, ask
yourself if you really, really need it.

NOTE: Objective-C now has nonull and nullable directives to give it
explicit variable type declaration, which is more Swift-like.

Red flag: Besides not knowing what Optionals are and how to work with them,
the biggest red flag for an interviewer would be if you speak in favor of Op-
tional Binding and explicit Optional Unwrapping. The former leads to poor
design and cognitive overhead of if/else statements and with the latter there is
the potential danger of runtime exceptions.

36

4.3 What is the difference between struct and
class in Swift? When would you use one or
the other?

Structs and classes in Swift are very similar and different at the same time.
This is another fundamental language question that could be asked to gauge
your level of understanding of Swift and the features it offers.

Expected answer: Both structs and classes in Swift can have properties,
methods, subscripts or initializers, be extended, and conform to protocols.

Classes are reference types. They increase their reference count when passed
to a function or assigned to a variable or constant. They also have some extra
stuff like inheritance from a superclass (structs can’t do that), type casting, and
deinitializers (former dealloc).

Structs are so-called value types. That means that when a struct is as-
signed to a variable or a constant, or is passed to a function, its value is copied
instead of increasing its reference count.

The key thing about choosing between using a class or a struct is reference or
value passing. If you need to store some primitives (i.e. Ints, Floats, Strings,
etc.), use struct. However, if you need custom behavior where passing by
reference is preferable (so that you refer to the same instance everywhere), use
class.

Red flag: A red flag for this kind of question would be saying that you don’t
really use structs and you prefer classes everywhere, just like in good old
Objective-C. Structures is a great modern addition to Swift that, just like strong
typing, let/var, and Optionals, forces developers to think harder about the
data they use in their apps.

37

4.4 How is memory management handled in iOS?

Memory management is very important in any application, especially in iOS
apps that have memory and other constraints. Hence, this is one of the standard
questions that is asked in one form or another. It refers to ARC, MRC, reference
types, and value types.

Expected answer: Swift uses Automatic Reference Counting (ARC). This is
conceptually the same thing in Swift as it is in Objective-C. ARC keeps track
of strong references to instances of classes and increases or decreases their
reference count accordingly when you assign or unassign instances of classes
(reference types) to constants, properties, and variables. It deallocates memory
used by objects which reference count got down to zero. ARC does not increase
or decrease the reference count of value types because, when assigned, these
are copied. By default, if you don’t specify otherwise, all the references will
be strong references.

One of the gotchas of ARC that you need to be aware of is Strong Reference
Cycles. For a class instance to be fully deallocated under ARC, it needs to be
free of all strong references to it. But there is a chance that you could structure
your code in such a way that two instances strongly reference each other and
therefore never let each other’s reference count drop down to zero. There are
two ways of resolving this in Swift: weak references and unowned references.
Both of these approaches will assign an instance without keeping a strong ref-
erence to it. Use the weak keyword for one and the unowned keyword for the
other before a property or variable declaration. Weak reference is used when
you know that a reference is allowed to become nil whereas unowned refer-
ence is used when you are certain that the reference has a longer lifecycle and
will never become nil. Since weak references can have a value or no value at
all, they must be defined as optional variables. An unowned reference has to
be defined as non-optional since it is assumed to always have a value.

Another important gotcha is Strong Reference Cycle in Closures. When you
use closures within a class instance they could potentially capture self. If
self, in turn, retains that closure, you’d have a mutual strong reference cy-

38

cle between closure and class instance. This often occurs when you use lazy
loaded properties for example. To avoid it, you’d use the same keywords weak
and unowned. When you define your closure, you should attach to its defi-
nition a so called capture list. A capture list defines how the closure would
handle references captured in it. By default, if you don’t use a capture list,
everything will be strongly referenced. Capture lists are defined either on the
same line where the closure open bracket is or on the next line after that. They
are defined with a pair of square brackets and every element in them has a weak
or unowned keyword prefix and is separated from other elements by a comma.
The same thinking applies to a closure capture list as to variable references:
define a capture variable as a weak Optional if it could become nil’ and the
closure won’t be deallocated before then, and define a captured reference as
unowned if it will never become nil before the closure is deallocated.

Red flag: This is a must know for every iOS developer! Memory leaks and
app crashes are all too common due to poorly managed memory in iOS apps.

4.5 What are properties and instance variables in
Objective-C and Swift?

This could be a part of a memory management question or a standalone ques-
tion. It is very important to understand properties, instance variables, constants,
and local variables when working with Objective-C and Swift because they de-
fine how you refer to and work with your data.

Expected answer: Properties in Objective-C are used to store data in in-
stances of classes. They define the memory management, type, and access
attributes of the values they store such as strong, weak, assign, readonly
and readwrite. Properties store values assigned to them in an instance vari-
able that, by convention, has the same name as the property but starts with an
underscore prefix. When you declare a property in Objective-C that declaration
will also synthesize it, meaning create a getter and setter to access and set the
underlying instance variable.

39

The strong, weak andassign property attributes define how memory for a
property will be managed. It is going to be either strongly referenced, weakly
referenced (set to nil if deallocated), or assigned (not set to nil if deallo-
cated).

One great feature of Objective-C properties that is often overlooked is Key
Value Observation (KVO). Every Objective-C property can be observed
for changes enabling low-level Functional Reactive Programming capabilities.

In Swift, however, properties defined with a simple let or var are strong by
default. They can be declared as weak or unowned references with the weak
and unowned keywords before let/var. Swift properties in types are called
stored properties. Unlike Objective-C properties, they do not have a backing
instance variable to store their values. They do declare setters and getters that
can be overridden, however.

Swift enforces basic dependency injection with properties. If you define a let
or var property, it has to be either initialized in the property declaration and
will be instantiated with that type’s instance or it has to be injected in a desig-
nated initializer instead. Optional properties don’t have to be initialized right
away or injected because, by their nature, they can be nil.

Also, Swift properties can’t be KVOed and instead have a greatly simplified
mechanic built in - Property Observers (willSet/didSet). The only
way to have property KVO in Swift is to subclass from NSObject or its sub-
classes.

Class or type properties are the properties defined for the entire type/class rather
than individual instances of that type. In Swift, they can be defined with the
static keyword for value types (struct, enum) and with the class keyword
for class types. In Objective-C, since Swift 3 and Xcode 8, you can also define
class properties using the class keyword in property declaration.

Properties in both Swift and Objective-C can be lazy loaded. In Swift, you’d
use @lazy directive in front of a property declaration. In Objective-C, you’d
have to override property getter and set and initialize its value only if the un-
derlying instance variable is nil.

40

Red flag: You don’t have to go too deep into the details of properties imple-
mentations and features in Swift and Objective-C. Nonetheless, you do have to
know at least the basics of strong/weak/unowned referencing.

4.6 What is a protocol (both Obj-C and Swift)?
When and how is it used?

Protocols are vital for any strongly typed OO language. Both Objective-C and
Swift use them and you should expect to be asked about them on every iOS
interview. You have an option to either just quickly go over the functionality
and purpose of protocols or to steer your conversation to a deeper discussion of
protocol-oriented programming. It’s up to you.

Expected answer: Protocols (or, in other languages, Interfaces) are dec-
larations of what a type that adopts them should implement. A protocol only
has a description or signature of the methods, properties, operators, etc. that a
type implements without the actual implementation.

In both Swift and Objective-C protocols can inherit from one or more other
protocols.

In Objective-C, protocols can declare properties, instance methods, and class
methods. They can be adopted only by classes. You could define methods and
properties as optional or required. They are required by default.

In Swift, protocols can declare properties, instance methods, type methods,
operators and subscripts. They can be adopted by classes, structs, and enums.
By default, everything in Swift protocols is required. If you’d like to have
optional methods and properties, you have to declare your Swift protocol as
Objective-C compatible by prefixing it with @objc. If you prefix your protocol
with @objc, it can only be adopted by classes.

Swift also lets you provide a default implementation for your protocols with a
protocol extension.

41

Protocols are a great addition to any OO language because they allow you to
clearly and explicitly declare interfaces of things in your code and be able to
rely on them. It is a way to abstract internal implementation details out and care
about types rather than about inheritance structures. Declaring clear protocols
allows you to dynamically change objects that conform to the same protocol at
runtime. It also lets you abstract things out and code against interfaces rather
than specific classes or other types. It helps, for example, with the implementa-
tion of core Cocoa Touch design patterns such as Delegation. Also, develop-
ing against protocols could help with test-driven development (TDD) because
stubs and mocks in tests could adopt the necessary protocols and substitute or
“fake” the real implementation.

Red flag: Protocols are one of the fundamental features of Objective-C and
Swift. Being able to not only use and adopt existing protocols that Cocoa
Touch provides but also create your own is crucial for any iOS developer.

4.7 What is a category/extension? When is it used?

Categories and extensions are super-useful when developing with Objective-C
and Swift. Having a handle on the benefits and limitations of categories and
extensions is an important skill so expect this question on pretty much every
interview.

Expected answer: Categories in Objective-C and Extensions in Swift
are ways to extend existing functionality of a class or type. They allow you
to add additional methods in Objective-C and Swift without subclassing. And
in Swift to add computed properties, static properties, instance/type methods,
initializers, subscripts, new nested types, and make existing type conform to a
protocol without subclassing.

In Objective-C, categories are typically used to extend the functionality of
3rd-party or Apple framework classes. You can also use them in your own
classes to distribute implementation into separate source files or to declare pri-
vate or “protected” methods.

42

In Swift, extensions are used to extend the functionality of existing types or
to make a type conform to a protocol.

The drawback of extensions and categories is that they are globally applied,
unlike protocols. This means that after you define an extension/category for a
class or type, it will be applied to all the instances of that type, even if they
were created before the extension/category was defined.

Neither categories nor extensions can add new stored properties.

Another important gotcha with categories and extensions is name clashes. If
you define the same name from another category/extension or existing class/type
in an extension/category, you can’t predict what implementation will take prece-
dence at runtime. To avoid that collision, you should namespace your methods
with a prefix and an underscore; i.e., something like
func ab_myExtensionMethodName()where ab is your codebase’s class/type
name prefix (same convention as with the NS prefix for Cocoa’s legacy NextStep).

Red flag: Extensions/Categories used to be an advanced feature of Objective-C
and Swift but not any more. The key is not to abuse them.

4.8 What are closures/blocks and how are they used?

Blocks and closures are an integral part of Objective-C and Swift development.
This question used to be an advanced one for Objective-C developers but nowa-
days it is a standard for both Objective-C and Swift so it is going to be asked
in 100% of interviews.

Expected answer: Blocks in Objective-C and closures in Swift declare and
capture a piece of executable code that will be launched at a later time. You can
either define them in-line or give them dedicated type names to be referenced
and used later. Blocks and closures are the first steps to multi-threading and
asynchronicity in Swift and Objective-C since they are the building blocks that
capture work that needs to be executed at later time (a.k.a. asynchronously).

Blocks/closures are reference types and will retain/strongly reference every-

43

thing put in them unless otherwise specified. You can avoid strong reference
cycle issues by using the __block and __weak keywords in Objective-C (or,
better still, use @strongify/@weakify) and [weak self]/[unowned self]
in Swift.

Blocks and closures syntax is notoriously hard to remember so if you find
yourself stuck, check out these two websites: http://fuckingblocksyntax.com/
http://fuckingclosuresyntax.com/

If those domain names are offensive to you, try these more friendly alternatives:
http://goshdarnblocksyntax.com/ http://goshdarnclosuresyntax.com/

Red flag: The main red flag with blocks and closures is memory manage-
ment. Make sure you talk about strong reference cycle and how to avoid it with
blocks/closures.

4.9 What is MVC?

Oh, good old MVC. This is a fundamental design pattern Apple keeps pushing
onto iOS developers. Every single interviewer will ask a question about this.

Expected answer: MVC stands for Model View Controller. It is a software
design pattern Apple chose to be the main approach to iOS application devel-
opment. Application data are captured and represented by Models. Views are
responsible for drawing things on the screen. Controllers control the data flow
between Model and View. Model and View never communicate with each other
directly and instead rely on Controller to coordinate the communication.

A typical representation of each MVC layer in an iOS application would be the
following:

• UIView subclasses (Cocoa Touch or custom) are the Views

• UIViewControllers and their subclasses are the Controllers

44

https://github.com/jspahrsummers/libextobjc
http://fuckingblocksyntax.com/
http://fuckingclosuresyntax.com/
http://goshdarnblocksyntax.com/
http://goshdarnclosuresyntax.com/

• and any data objects, NSManagedObject subclasses and similar are the
Models

MVC is a great general purpose design pattern but using it solely limits your
architecture and often leads to notorious “Massive View Controller”. “Massive
View Controller” is the state of a codebase where a lot of logic and responsi-
bility has been shoved into View Controllers that doesn’t belong in them. That
practice makes your code rigid, bloated, and hard to change. There are other
design patterns that can help you remedy this, such as MVVM and the general
SRP principle. Even though Apple keeps telling us that MVC is everything,
don’t be fooled by it and stick to SOLID principles. We’ll talk more about
MVC, MVVM, SOLID principles, and design patterns in general in Chapter 8.

Red flag: You absolutely have to know what MVC is. It’s basic to any iOS
development. At the same time, though, explore alternatives and additions
such as MVVM.

4.10 What are Singletons? What are they used
for?

Singleton is a common design pattern used in many OOP languages and Cocoa
considers it one of the Cocoa Core Competencies.. This question comes up
from time to time on interviews to either gauge your experience with singletons
or to find out if you have a background in something other than just iOS.

Expected answer: Singleton is a class that returns only one-and-the-same
instance no matter how many times you request it.

Singletons are sometimes considered to be an anti-pattern. There are multi-
ple disadvantages to using singletons. The two main ones are
global state/statefulness and object lifecycle and dependency injection.

Singletons are often misused and can breed in global state, which makes debug-
ging and working with your code difficult. It starts off very innocently when

45

you think you’ll have only one instance of a class and you make it globally
available across your codebase. But at some point you need to either reset it,
do something else with the data stored on it, or realize that sharing it across
the whole app doesn’t make sense anymore. This is when you get into trouble
because your singleton is everywhere now and data stored in it is unreliable
because you don’t know who might’ve changed it and when.

Using singletons makes it hard for you to inject dependencies because with a
singleton there’s only one instance of your singleton class. That prevents you
from injecting it as a dependency for the purposes of testing and just general
inversion of control architecture.

Red flag: Never say that singletons are good for global values and storages.
Architecting your apps this way leads to a disaster.

4.11 What is Delegate pattern in iOS?

Like MVC, this is one of the fundamental Cocoa design patterns. This will be
asked on every interview.

Expected answer: Delegate pattern is a variation of Observer pattern where
only one object can observe events coming from another object. That effec-
tively makes Delegate pattern a one-to-one relationship. Delegates are com-
monly used across iOS frameworks. Two of the arguably most commonly used
examples would be UITableViewDelegate and UITableViewDataSource.
These are both represented by a protocol that an object conforms to and UITable-
View uses the single object it is provided with to send messages/events. Unlike
with Observer pattern, there can be only one delegate object.

Delegation is sometimes abused by iOS developers. Be careful not to reas-
sign your delegate object throughout the flow of your app because that might
lead to unexpected consequences. The delegate/delegatee relationship is tightly
coupled.

46

4.12 What is KVO (Key-Value Observation)?

KVO is one of the core parts of Cocoa Touch and is used widely across the
platform.

Expected answer: KVO stands for Key-Value Observation and provides me-
chanics through which you can observe changes on properties in iOS. In con-
trast to Delegate KVO entails a one-to-many relationship. Multiple objects
could subscribe to changes in a property of another object. As soon as that
property changes, all objects subscribing to it will be notified.

Under-the-hood implementation uses instance variables defined with properties
to store the actual value of the property and setters/getters supplied by synthe-
sization of those properties. Internally, when you assign a property it will call
willChangeValueForKey: and didChangeValueForKey: to trigger the
change broadcast to observers.

Another way that KVO is used in iOS apps is public broadcasting of mes-
sages through NSNotificationCenter. The underlying mechanics are the
same as with property KVO but the broadcasting can be triggered via a post:
method on NSNotificationCenter default center rather than a property change.

Originally an Objective-C feature, this is also available in Swift to classes sub-
classed from NSObject.

KVO on its own is a fairly bulky technology but it opens up a lot of possibilities
that you can build on. There are a lot of great FRP projects like ReactiveCocoa
and RxSwift that were built using KVO mechanics.

4.13 What does iOS application lifecycle consist
of?

As iOS developers we simply have to know what’s going on with the app we’re
building. Application lifecycle questions are intended to show how you under-

47

https://github.com/ReactiveCocoa/ReactiveCocoa
https://github.com/ReactiveX/RxSwift

stand an iOS app’s overall behavior in the system.

Expected answer:

The main point of entry into iOS apps is UIApplicationDelegate.
UIApplicationDelegate is a protocol that your app has to implement to
get notified about user events such as app launch, app goes into background or
foreground, app is terminated, a push notification was opened, etc.

Lifecycle methods:

(see a picture on the next page)

48

49

When an iOS app is launched the first thing called is
application: willFinishLaunchingWithOptions:-> Bool. This
method is intended for initial application setup. Storyboards have already been
loaded at this point but state restoration hasn’t occurred yet.

Launch

• application: didFinishLaunchingWithOptions: -> Bool
is called next. This callback method is called when the application has
finished launching and restored state and can do final initialization such
as creating UI.

• applicationWillEnterForeground: is called after application:
didFinishLaunchingWithOptions: or if your app becomes active
again after receiving a phone call or other system interruption.

• applicationDidBecomeActive: is called after
applicationWillEnterForeground: to finish up the transition to
the foreground.

Termination

• applicationWillResignActive: is called when the app is about to
become inactive (for example, when the phone receives a call or the user
hits the Home button).

• applicationDidEnterBackground: is called when your app enters
a background state after becoming inactive. You have approximately five
seconds to run any tasks you need to back things up in case the app gets
terminated later or right after that.

• applicationWillTerminate: is called when your app is about to be
purged from memory. Call any final cleanups here.

50

Both application: willFinishLaunchingWithOptions: and
application: didFinishLaunchingWithOptions: can potentially be
launched with options identifying that the app was called to handle a push no-
tification or url or something else. You need to return true if your app can
handle the given activity or url.

Knowing your app’s lifecycle is important to properly initialize and set up
your app and objects. You don’t have to run everything in application:
didFinishLaunchingWithOptions, which often becomes a kitchen sink
of setups and initializations of some sort.

4.14 What is View Controller? What is its lifecy-
cle?

View Controllers are one of the core fundamental building units of Cocoa
Touch applications. This question could be a part of or an expansion on the
MVC question.

Expected answer:

View Controllers (VC) are the Controller part of the MVC triangle. They are re-
sponsible for controlling the view. Every time you want to display more or less
significantly complex pieces of UI, you would want to use a View Controller
to handle the lifecycle and user interaction callbacks of that UI. In a nutshell, a
View Controller is a simple subclass of UIViewController that has to have
a view to draw the UI on. It is either attached to a UIWindow as the root View
Controller of that window or managed by a UINavigationController or
by another VC or system to be presented to the user.

At the end of the day, when you develop iOS apps there are two main reasons
you’d want to use View Controllers:

51

• get lifecycle callback for the view that the VC is managing (when the
view was loaded, displayed, hidden, etc.)

• get handy built-in system integrations to present and dismiss VCs using
UINavigationController, modal presentation, or parent/child con-
tainment API

View Controller lifecycle callbacks:

52

• loadView(): you can override this method if you’d like to create the
view for your VC manually.

• viewDidLoad(): this method is called once when your VC’s view was
loaded in memory for the first time. Do any additional setup and initial-
izations here. Typically, this is the method where most of your custom
view initialization and autolayout setup will go. Also, start your services
and other async data-related stuff here.

• viewWillAppear(): this method is called when the view is about to
appear on the screen. It will be called after viewDidLoad and ev-
ery subsequent time after view disappears from screen and then appears
again. For example, when you present a view in a navbar it will call
viewDidLoad and then viewWillAppear/viewDidAppear for that
VC. Later, if you push a new VC on top of it, viewWillDisappear
and viewDidDisappear will be called because it’s no longer the fore-
ground/top VC. Later still, if the user taps the Back button, viewWill-
Appear and viewDidAppear for that first VC will be called because it
becomes the top VC again. Use this method to do final UI customiza-
tions, hook up UI observers, etc.

• viewWillLayoutSubviews() is called right before layoutSubviews()
in underlying UIView for that VC. It is rarely used to adjust your view
positioning.

• viewDidLayoutSubviews() is called right after layoutSubviews()
in underlying UIView for that VC. It is rarely used to adjust your view
positioning.

• viewDidAppear(): this method is called right after the view was shown
on the screen and follows a viewWillAppear call.

• viewWillDisappear() is called when the view is about to become
“hidden” i.e. not the top view controller presented to the user (see exam-
ple above).

53

• viewDidDisappear() is called after viewWillDisappear and indi-
cates that the view is “hidden”.

• didReceiveMemoryWarning() is called when the system is low on
memory and needs to release additional resources. Deallocate as much
as you can here. Don’t go crazy about it, though, because nowadays
phones are so powerful that memory warnings rarely happen.

Additionally, View Controller, just like Views, can be initialized either pro-
grammatically in code using init... constructor/initializer methods or loaded
from a storyboard/xib file. In the former case, one of the initializer methods
will be called and in the latter it will be via -initWithCoder.

Red flag: As with memory management, you simply have to know this stuff to
be able to develop iOS apps.

4.15 Conclusion

You’ll encounter fundamental questions on every interview in various forms.
These are the basic questions and answers that it is absolutely necessary to
know and understand in order to do iOS development.

54

Chapter 5

Step Four: Get Productive
with Networking

Virtually every iOS app does some kind of networking. It’s an integral part of
our lives in this interconnection age of ours. Therefore it’s 100 percent guar-
anteed you’ll be asked the questions covered in this chapter at every interview
you go on. The depths and details may vary, but overall, every iOS devel-
oper should know how to handle networking and parse JSON data and how to
structure iOS as a client-side app in general.

Alright, without further ado, let’s dive in!

Interview questions covered in this chapter:

• What is HTTP?

• What is REST?

• How do you typically implement networking on iOS?

• What are the concerns and limitations of networking on iOS?

• What should go into the networking/service layer?

55

• What is NSURLSession? How is it used?

• What is AFNetworking/Alamofire? How do you use it?

• How do you handle multi-threading with networking on iOS?

• How do you serialize and map JSON data coming from the backend?

• How do you download images on iOS?

• How would you cache images?

• How do you download files on iOS?

• Have you used sockets and/or pubsub systems?

• What is RestKit? What is it used for? What are the advantages and
disadvantages?

• What could you use instead of RestKit?

• How do you test network requests?

5.1 What is HTTP?

Even though you could think that this is a purely backend question, it is very
beneficial and even necessary for iOS developers to know what HTTP is and
know the meaning of the verbs used with it. You won’t be tested on theory
and the history of HTTP but you should be able to talk about the basics of the
protocol that powers the modern-day web.

Expected answer: HTTP stands for Hypertext Transfer Protocol and is the
foundation of today’s internet. What it means for us iOS developers is that
when we build client-side applications we connect with backend APIs via HTTP.
When we send requests to HTTP APIs we use “verbs” such as HEAD, GET,

56

POST, PATCH, PUT, DELETE, etc. Each verb represents a different type of ac-
tion you’d like the backend to do. You’d typically work with the following
verbs in a properly implemented API:

• HEAD returns header information about a resource. Typically it has a
status code (200, 300, 400, etc.) and caching details.

• GET returns actual data for the resource you requested. Typically it’s your
domain model data.

• POST is used to, well, post something to your server. Typically used to
submit data only.

• PATCH is used to change a resource’s data. Unlike PUT, it changes only
certain values for the resource instead of overriding the whole thing.

• PUT is like PATCH, but instead of altering only certain values in a re-
source, it is supposed to replace everything about the resource with the
data you submit leaving only the unique ID intact.

• DELETE, not surprisingly, destroys a resource on the backend.

iOS applications that communicate with server APIs using the above verbs can
achieve most of the networking goals, except real-time connection/sockets, as
long as the APIs adhere to HTTP standards and respect the meaning of those
verbs. It is incredibly difficult to work with a backend that does some data
changes on POST requests and returns some data on PUT requests and so on.
Contracts between server and client were made for the purpose of not only
convenience but consistency and predictability.

Red flag: Not knowing what HTTP is. Today’s developers working with the
web (and yes, as an iOS developer you do work with the web through requests
to server APIs) simply can’t afford not to know the fundamental meaning of
HTTP verbs and the expected server behavior when using them.

57

5.2 What is REST?

REST stands for Representational State Transfer. REST is an API architecture
built on top of HTTP protocol. Its main focus is resources and the ability
of client applications to access, write, delete, and alter them. As far as iOS
developers are concerned, it is the most popular API architecture for third-party
services and many internal product APIs. Knowing what REST is and what it
means is vital for iOS app development.

Expected answer: REST is an API architecture that revolves around resources
and HTTP verbs. Each resource is represented by a set of endpoints that can
receive some of the HTTP verb requests to do various CRUD(Create, Read,
Update, Destroy) operations. For example, let’s say you have an API that lets
you manage posts users create in your app. A typical CRUD REST API for
it would look like this:

• https://yourawesomeproduct.com/posts accepts GET requests and
returns a list of posts available on the server.

• https://yourawesomeproduct.com/posts/123 accepts GET re-
quests and returns a single post with given ID (123) available on the
server.

• https://yourawesomeproduct.com/posts accepts POST requests
to create new post objects with the data provided by the iOS client ap-
plication.

• https://yourawesomeproduct.com/posts/123 accepts PATCH re-
quests to alter certain data in a specific post with a given ID.

• https://yourawesomeproduct.com/posts/123 accepts PUT re-
quests to replace an entire set of data in a specific post with given ID.

• https://yourawesomeproduct.com/posts/123 accepts DELETE
requests to destroy a post with a specified ID.

58

RESTful APIs are also supposed to return the right status codes in response to
your requests, such as 200 for a successful GET request or 201 for a successful
POST request.

If the API you’re using is truly RESTful then it will be predictable and easy to
work with. Again, protocols and contracts in software development were made
not only for convenience but for reliability as well.

Red flag: You should have at least a basic idea of what REST and RESTful
backends are.

5.3 How do you typically implement networking
on iOS?

This is a general networking question that could prompt and imply either a
big picture architectural discussion about decoupling and single responsibility
around APIs on iOS or a specific, tactical discussion about how you would
implement a networking/service layer in your applications. It’s up to you where
to steer the discussion.

Expected answer: Networking falls into the service layer of your ap-
plication since it deals with external communication. In general, you should
decouple everything HTTP/network-related in your app into a set of service
and client objects that handle all the nitty-gritty of HTTP connection. Those
objects would perform requests and API calls for your application, decoupling
it from other layers of responsibility (like storage, business logic, UI, etc.) of
the app.

A typical small “starter” implementation of a service layer in your app could
look like this:

• a networking/HTTP manager of some kind (either NSURLSession or
AFNetworking/Alamofire manager).

59

https://httpstatuses.com/

• an APIClient object that can be configured with a networking manager
to actually perform HTTP requests against your API domain. APIClient
usually is responsible for signing every request with authentication to-
ken/credentials.

• a set of service objects that work with individual resources of your
RESTful API such as PostsService, UsersService, etc. These ser-
vice objects use shared APIClient to issue specific concrete HTTP re-
quests to their respective /posts and /users endpoints. They compose
params and other necessary data for requests.

At the end of the day, all other parts of the app are working directly only with
service objects and never touch low-level implementation such as APIClient
or NSURLSession/AFNetworking/Alamofire. That separation of con-
cerns ensures that if your authentication or individual endpoints change they
won’t affect each other in your codebase.

Red flag: Simply saying that you use NSURLSession and issue requests in
view controllers when necessary isn’t gonna cut it. These days, AFNetworking
and Alamofire are the de facto standard for doing HTTP networking on iOS
and following the Single Responsibility Principle (SRP) is vital for codebases
big or small.

5.4 What are the concerns and limitations of net-
working on iOS?

The aim of this question is to gauge your understanding of the constraints of
networking on iOS.

Expected answer: The main networking constraints on iOS are battery and
bandwidth. iOS devices have limited battery capacity and sporadic network
connection that can drop in and out frequently. When developing the network-
ing layer of the app, you should always issue as few HTTP requests as possible

60

and retry requests if they suddenly fail due to a poor connection or other issues.

There’s also a bandwidth issue; it is not a good idea to upload or download
large files and chunks of information when using a cellular connection and it is
advised to use Wi-Fi instead.

5.5 What should go into the networking/service layer?

This is a conceptual and architectural question. Every application consists of
several layers of responsibility and the service layer is responsible for all the
external data communication. You are asked about this to gauge your level of
understanding of what is going to the service and networking layer in iOS apps
according to SRP.

Expected answer: Every iOS app that works with external data has a service
layer that is responsible for communication with things like HTTP APIs, GPS
location, BLE peripherals, Gyroscope, iCloud, sockets, and so on. They are
all external to your app resources, and to work with them, you need a set of
objects that can communicate with those resources (for example, HTTP Client
or BLE manager) and can serialize/deserialize data sent to or received from
those resources.

Here is a typical service layer that does networking with some kind of API:

• APIClient object that has an HTTP manager

• PostsService object that owns APIClient and issues requests to spe-
cific endpoints to POST and GET posts. PostsService maps JSON
data to your custom domain model objects.

• Post class that subclasses from MTLModel to map JSON received by
PostsService to your custom Post objects

And here’s what will go in the same service layer for Bluetooth Low Energy
(BLE):

61

https://github.com/Mantle/Mantle

• BLEClient object that owns and manages CBCentralManager and ex-
ecutes low-level connection to BLE peripherals

• PeripheralsClient object that discovers peripheral services, charac-
teristics, and executes low-level stuff to get and send values to and from
peripherals

• SpecificDeviceService that uses both BLEClient and Peripherals-
Client to orchestrate a connection to BLE, discovery, and communi-
cation with the specific device/peripheral you’re trying to connect to.
SpecificDeviceService is also responsible for mapping data received
from Characteristic to your custom objects.

• CustomCharacteristicData is just like Post. In the case of JSON
API it is a domain model object that is mapped from raw data received
from BLE to conveniently work with that piece of data throughout your
application.

As you can see, both the HTTP and BLE examples are similar in what they
do. Both of those examples wrap some kind of external service (HTTP or
BLE respectively) and make it convenient and easy to work with those exter-
nal services. At the end of the day, your application is going to interact only
with PostsService and Post objects to do its API networking, and with
SpecificDeviceService and CustomCharacteristicData objects to
work with external BLE devices. Low-level implementation details like HTTP
GET/POST requests and BLE connection, peripheral, and characteristics dis-
covery, are all hidden behind those class interfaces. This design makes the
code robust and reliable and separates low-level, unimportant logic from the
business logic of your app.

Red flag: Simply saying the service layer has only an HTTP client and you
create HTTP requests “when needed” for each endpoint isn’t a red flag per
se, but you should show a deeper architectural understanding of separation of
concerns in iOS apps.

62

https://developer.apple.com/reference/corebluetooth/cbcharacteristic

5.6 What is NSURLSession? How is it used?

That’s one of the basic iOS networking questions. Go into deep details only if
asked.

Expected answer: Since iOS 7, NSURLConnection became obsolete and the
new Apple standard for implementing HTTP networking is NSURLSession.
NSURLSession and related classes do a lot of heavy lifting for basic HTTP
connection and authentication for you. It allows you to send HTTP verb (GET,
POST, etc.) requests, connect to FTP, and to download files. You can option-
ally configure cache and execute your requests in a background/app suspended
state. Overall the structure of NSURLSession-related things looks like the
following:

The way you typically work with it is to use NSURLSessionDownloadTask
objects to execute requests against given urls. It has a block-based and delegate-

63

based API, which means there are two ways you can issue HTTP requests with
NSURLSession: either by receiving a completion handler block callback or by
implementing delegate methods and receiving notifications as the data comes
in. Either way is fine and has a different purpose depending on your use case
(for example, if you’d like to receive download progress notification you would
want to implement delegate callbacks rather than a completion block). Also
NSURLSession allows you to resume, cancel, or pause networking task.

All and all, NSURLSession is a very robust way of doing HTTP and other net-
working but in reality, it is a bit too low level, and in the majority of the cases,
you’re better off using a wrapper library like AFNetworking or Alamofire.
Both of them are the de facto standard for networking on iOS, and use NSURL-
Session under the hood to run HTTP requests for you.

Red flag: Even though these days we all use AFNetworking and Alamofire,
it is beneficial to know what’s going on under the hood and how conceptually
NSURLSession works.

5.7 What is AFNetworking/Alamofire? How do
you use it?

AFNetworking and Alamofire became the de facto standard for networking
on iOS. Expect this question on every interview you have.

Expected answer: AFNetworking and Alamofire are wrappers around stan-
dard Apple iOS technologies for networking such as NSURLSession that make
working with it more convenient and reduce the boilerplate setup you have to
do when you work with NSURLSession directly. Nowadays, AFNetworking
and Alamofire are the de facto standard of how you do HTTP networking on
iOS and probably the most commonly used third-party library. As a wrapper
around Apple’s NSURLSession, it has access to pretty much every feature it
provides and more. Overall it takes care of HTTP requests, JSON data serial-
ization into Dictionary objects, response caching, and status code response

64

validation. With it, you can setup HTTP request headers, params, issue HTTP
GET/POST/PUT/etc. requests, serialize JSON response, do basic HTTP au-
thentication, upload and download files, and more.

Alamofire has a block-based API. You use it either directly with minimal setup
by creating requests using Alamofire class methods or by creating a session
manager object (and providing it with URLSessionConfiguration) that can
take callback blocks.

Here’s an example of a typical minimal setup request:

Alamofire.request("https://httpbin.org/get").responseJSON { response in
print(response.request) // original URL request
print(response.response) // HTTP URL response
print(response.data) // server data
print(response.result) // result of response serialization

if let JSON = response.result.value {
print("JSON: \(JSON)")

}
}

And this is how you’d set up a session manager and use it to send requests:

let configuration = URLSessionConfiguration.default
let sessionManager = Alamofire.SessionManager(configuration: configuration)

sessionManager.request(urlString, method: .post, parameters: parameters,
encoding: JSONEncoding.default)

.responseJSON { [weak self] response in

if let json = response.result.value as? [String: String] {
// do something if it was success

} else {
// do something if it was failure

}

}

Red flag: Alamofire and AFNetworking are the workhorses for today’s HTTP
networking on iOS and every developer should be familiar with it. You can

65

get away with not knowing about them only if you’re very good with NSURL-
Session.

5.8 How do you handle multi-threading with net-
working on iOS?

Multi-threading is very important when you work with networking on mobile
devices. Blocking the main thread, making your UI unresponsive for the du-
ration of HTTP requests for a long time, is not an option. This question most
likely will be asked in every interview in one form or another.

Expected answer: The general idea with any kind of multi-threading on iOS
is that you don’t want to block the main UI thread. That means that every
HTTP or other service/networking layer request should be executed on a back-
ground thread. In fact, some of the iOS system frameworks will complain
and print logs or crash if you use them outside of the main thread (Autolayout
for example). There are various mechanics in iOS and third-party libraries to
help you with this but the most common solutions are GCD and NSOperation.
Most of the third-party libraries (i.e., Alamofire and AFNetworking) and
NSURLSession already have threading mechanics built in and execute their
requests on a background thread and call completion blocks on the main thread.

GCD is a low-level library for managing threading and queues on iOS. It has
a C-based interface (with Swift 3 it has finally become an object-based API)
and is very powerful. You’d use it in conjunction with NSURLSession, for
example. All the HTTP requests the NSURLSession makes are executed on
a background thread, and it could be either configured to execute completion
callback on the main thread or on a background thread. Also, if your comple-
tion callback is executed on a background thread but you need to do some UI
updates, you can use GCD blocks like this:

66

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

NSURLRequest *request = [NSURLRequest requestWithURL:
[NSURL URLWithString:@"http://smartcloud.io/"]];

NSURLResponse *response;
NSError *error;
NSData *data = [NSURLConnection sendSynchronousRequest:request

returningResponse:&response
error:&error];

if (error) {
// handle error
return;

}
dispatch_async(dispatch_get_main_queue(), ^{

// update your UI safely
});

});

Red flag: These days every developer should know that you shouldn’t block
the main thread with background operations such as HTTP networking. Not
explaining what the issue is will definitely raise a red flag.

5.9 How do you serialize and map JSON data com-
ing from the backend?

JSON serialization and mapping are common tasks when you’re doing HTTP
networking with an API on iOS. Expect this question either as a standalone one
or as a part of other HTTP/networking questions and follow-ups.

Expected answer: Every time you receive JSON or XML or any other kind
of response from a backend API, you most likely get it in a JSON or binary
or other “inconvenient” format. The first thing you need to do to be able to
work with the data you’ve received is to serialize it in something your app
understands. At the most simplest and basic level that would be a dictionary or
array of objects containing other dictionaries, arrays, and primitives from that
response. So let’s say if your JSON response looks like this:

67

{
post: {
title: 'This is an awesome post!',
body: 'loads of text',
tags: ['Awesomeness', 'Coolness', 'Greatness!'],

}
}

Then a serialized object from it is going to look like this:

var post = Dictionary<String, AnyObject>();

post["title"] = "This is an awesome post!" as AnyObject?
post["body"] = "loads of text" as AnyObject?
post["tags"] = ["Awesomeness", "Coolness", "Greatness!"] as AnyObject?

print(post)

========== print output
["tags": <Swift._SwiftDeferredNSArray>(Awesomeness, Coolness, Greatness!),
"body": loads of text,
"title": This is an awesome post!]

Obviously in the example above we’ve manually created the dictionary our-
selves but this is exactly what something like NSJSONSerialization would
do for you. NSJSONSerialization is the go-to tool for JSON dictionar-
ies/arrays/primitives serialization.

Data serialization is only the first piece of the puzzle when working with JSON
data. The other piece is data mapping. Even though we now have a serial-
ized Dictionary object that represents the post data that we’ve received from
the backend, it’s still just a Dictionary and is a poor choice for us to work
with throughout the app. We need a better domain model object and this
is where data mapping comes into play. In order for us to work with our own
custom domain model objects and classes, that dictionary needs to be mapped
into those custom classes. You can either do it yourself manually, take a Dic-
tionary object, take values for each key and assign them to properties on your
custom Post class or struct object. But that is a very tedious and error-prone
boilerplate code. A better solution for this would be a library such as Mantle or

68

https://github.com/Mantle/Mantle

ObjectMapper. Both of those help you declare your key/property mapping and
automate the process. As a result you’d get your custom domain model objects
crafted specifically for the tasks your application does, reducing errors.

Red flag: Too many developers neglect proper data mapping in their applica-
tions. Understanding what serialization and mapping are, what the differences
are between them, and why it is important to have well-defined domain models
will set you apart from other devs.

5.10 How do you download images on iOS?

A lot of iOS applications work with images fetched from the web. This is a
typical networking interview question that also touches upon data storage and
caching.

Expected answer: As with most of the networking things there’s a manual,
naive way and there are automations, libraries, and best practices that you can
utilize. For the most basic implementation of image downloading on iOS, you
could use good old Apple’s NSURLSession and download an image at a given
URL as binary data, convert it from NSData to UIImage, and then display it
in a UIImageView. That will work, but it is too raw and inefficient and has a
lot of performance implications.

There are two main things you need to worry about when working with images
fetched from the web on iOS: downloading and caching. Downloading involves
actually issuing an HTTP request to get the raw image data from a server.
Caching is concerned with storing downloaded images to disk, database, or
in-memory cache (or any combination of the three).

At the end of the day you’re better off using a library that takes care of a lot
image downloading and caching boilerplate for you. Typical options to pick
from are AFNetworking or Alamofire themselves or a powerhouse when
it comes to image download and caching, SDWebImage. SDWebImage gives
you a lot of flexibility with your image downloading and caching and provides
a set of UIImageView extension methods that you can call on to download

69

https://github.com/Hearst-DD/ObjectMapper
https://github.com/rs/SDWebImage

images for given URLs, along with placeholder images and download progress
reporting.

5.11 How would you cache images?

Image caching is important for every iOS application that fetches graphics from
the web. Due to mobile device constraints on memory, battery, and bandwidth,
it is important to cache images and be efficient when doing it.

Expected answer: When it comes to caching images, there are really three
ways you can go about it: in-memory cache, database storage, and disk storage.

In-memory cache could be as simple as a Dictionary that keeps a refer-
ence to UIImage objects and uses the URLs they were downloaded from as
unique keys or it could actually be NSCache that performs similar stuff for you
and also can be configured.

Database storage is used for image caching when you save downloaded
image binary to Core Data or Realm or a similar database. Typically this
is used for images of a very small size because databases were not necessarily
made to handle large files. The best use case for that is small thumbnail images.

Disk storage is what you expect it to be - storing downloaded files to the
disk for quick retrieval later instead of doing another fetch from the server.
Files are usually stored with a unique name identifier to make it easy to look
them up quickly.

Ultimately the best solution for caching is going to vary case by case, but a lot
of apps either use SDWebImage or a similar library or roll their own solution
using a combination of in-memory, database storage, and disk storage.

70

5.12 How do you download files on iOS?

File download is a common task for iOS apps. It could be a PDF or image or
video file that you need your app to download. And as usual, this question gives
you an opportunity to either go over the basics or to dig deeper and explain the
different techniques there are for downloading files.

Expected answer: At the very basic level, file download is just fetching a
bunch of bytes from a URL over HTTP somewhere on the web. Either NS-
URLSession’s NSURLSessionDataTask or Alamofire’s download GET
request will do the trick. When you get the data there are three ways you can
deal with it. You either: 1. work with received data right there in-memory in
the callback where you received it, 2. store the received file in a temporary
folder for later use, or 3. store the received file permanently on the disk.

1. Working the file right after you received it is the easiest. You have it
in NSData form and it’s accessible without any further ceremony. The
disadvantage though is that you can work with only small size files in
that fashion. If a file is too big, it could take too long to download and be
too expensive to handle in the callback block.

2. Storing the received file in a temp folder is a mid-ground solution that
typically is the best compromise and a great way to handle the data you
just downloaded. Storing it in a temp folder allows you postpone han-
dling the file until a later time and lets you move on in your download
callback block. Files are kept in the temp folder only for the duration of
your app running, though.

3. Storing the received file on disk allows you to access it later and some-
times is the only way to handle downloaded files when they are too big
to operate on in the download callback block.

Red flag: You should have at least a basic understanding of how to download
files on iOS.

71

5.13 Have you used sockets and/or pubsub systems?

This question isn’t typical for most of teams and companies, but those that work
with messaging/chat applications are most likely going to ask it. Pub/sub sys-
tems are growing in popularity for solving problems other than chat/messaging
on iOS though, so it is beneficial for iOS developers to be at least familiar with
the topic.

Expected answer: Sockets is a specific technology for persistent connection
communication and you can think of it as a subset of pub/sub systems. Sockets
and pub/sub systems such as Pubnub allow you to build apps that can connect
and observe external data streams and react and process received data in nearly
real time.

Consider this example: you’re building an app similar to Facebook Messenger.
In that app you have your normal view controller with a list of chats you have
open and when you open a specific chat it will open another view controller
for that chat. This new view controller with a specific chat then subscribes to
a channel using sockets or Pubnub or another pubsub system. As soon as it’s
subscribed to its chat channel, it will receive the latest batch of messages since
the last connection and then will start receiving and sending new messages in
real time as participants of that chat type them. That is the general idea of how
chat/message applications work.

5.14 What is RestKit? What is it used for? What
are the advantages and disadvantages?

RestKit used to be a very popular data synchronization framework used by
many companies, especially with legacy codebases. It is not as popular these
days, but if you’re joining a team that has to support that legacy technology,
then expect to be asked about RestKit.

Expected answer: RestKit is a framework that was made for the purpose of

72

https://www.pubnub.com/

data synchronization between client iOS applications and RESTful web ser-
vices. RestKit has several responsibilities it takes onto itself such as

• HTTP url composition and building (routing),

• HTTP GET/POST/etc. request sending and enqueueing,

• JSON request and response serialization,

• JSON response parsing and mapping,

• Core Data synchronization with mapping from JSON domain models
received from the backend,

• POSTing/PUTing/etc. domain models created locally and synced with
Core Data with a remote RESTful service.

As you can see it takes on quite a lot.

At the end of the day the reason RestKit became obsolete and is virtually not
used anymore on new projects is because it was doing too much for you and
forced you into its convoluted API. RestKit is so big that entire book can be
written about it. If you want to learn more or unfortunately have to support it
on a legacy project, head over to restkit on github to dig deeper into it.

As an alternative to RestKit, you’re better off rolling your own solution for data
synchronization. RestKit’s downfall was that it broke SRP. Choose wisely what
features and functionality you need from your libraries and how they should be
used in your applications.

Red flag: You don’t have to have experience with RestKit these days, but it is
very beneficial to have a general understanding of what it offers and does for
you so that you can make a conscious decision to pick it or avoid it.

73

https://github.com/RestKit/RestKit

5.15 What could you use instead of RestKit?

Since RestKit is practically obsolete these days, you could be asked about al-
ternatives you could use instead of RestKit to synchronize data with backend
APIs.

Expected answer: You have several options instead of RestKit to use for data
synchronization with backend APIs:

• Overcoat

• Roll-Your-Own-Solution

Overcoat is another library that takes care of a lot of things for you like RestKit,
but unlike RestKit its API is way easier to use. It takes care of routing, HTTP
requests, JSON response parsing, object mapping from JSON to custom ob-
jects, object mapping from custom objects to Core Data, and promises API out
of the box. It takes on a lot of responsibilities just like RestKit and therefore is
not advisable to use for every app.

But the better option is to roll your own solution. If you think about it, every-
thing that RestKit does is more or less necessary for any complex enough iOS
application. Things that it does can be implemented using other libraries and
tools available. For example:

• HTTP URL composition/routing can be implemented as a simple custom
URL builder.

• HTTP GET/POST/etc. requests sending and enqueueing can be handled
by AFNetworking and Alamofire.

• JSON request and response serialization is taken care of by NSJSON-
Serialization and/or Alamofire/AFNetworking.

• JSON response parsing and mapping can be handled by a library like
Mantle.

74

https://github.com/Overcoat/Overcoat

• Core Data synchronization and mapping from/to custom domain models
can be taken care of by Mantle.

And that’s everything you need. Rolling your own solution, and only when you
need to, will also help you evolve your codebase gradually without introducing
things with unnecessary functionality and baggage. You just need to know what
you need.

5.16 How do you test network requests?

Unit and integration testing are becoming more and more popular as tools for
testing evolve in the iOS ecosystem. This question carries with it a lot of bag-
gage and unfortunately is still somewhat controversial in the iOS community.

Expected answer: In general client-side applications do not integrate test net-
work requests, they only do unit-testing or mock them if really necessary. The
reason is that it is not common to have a dedicated server for unit-testing that
can receive and adequately respond to those test requests. And also there’s a
challenge of keeping it in sync with the current client-side codebase.

Typically OCMock-based libraries like Cedar, Quick, Specta, and Expecta are
the go-to tools for unit-testing on iOS.

5.17 Conclusion

Service- and networking-related questions are 100 percent guaranteed to be
asked on every iOS interview. Networking is the building block of pretty much
any iOS application these days; this is what makes apps useful - the ability to
connect to external services and the internet. In order to be a good iOS citizen
and create efficient apps that don’t waste bandwidth and sync data just in time,
you should know your options and know what you really need to accomplish
your task.

75

https://github.com/pivotal/cedar
https://github.com/Quick/Quick
https://github.com/specta/specta
https://github.com/specta/expecta

76

Chapter 6

Step Five: Learn How to
Store Data

This chapter covers storage layer questions and answers and is good for quick
interview prep for those questions. But there’s more to it and the coverage
in this chapter is continued in a bonus chapter, Chapter 9 Storage Evolution
(AKA You Don’t Always Need Core Data!). where we walk through building
a small storage layer. We start with an in-memory array and then evolve and
refactor it to use NSUserDefaults, File/Disk storage, and eventually Core
Data, looking at advantages and disadvantages of each along the way.

The storage layer is present in every application because all of them need to
have a state in one form or another. Often apps need to persist that state as
well. This is why it is important for iOS devs to know storage options. In this
chapter we’ll cover questions about arrays and dictionaries, NSUserDefaults,
file disk storage, Keychain, database solutions such Core Data, and more.

Interview questions covered in this chapter:

• What is the storage layer for in iOS applications?

• What can you use to store data on iOS?

77

• What is NSCoding?

• What is NSUserDefaults?

• What is Keychain and when do you need it?

• How do you save data to a disk on iOS?

• What database options are there for iOS applications?

• How is data mapping important when you store data?

• How would you approach major database/storage migration in your ap-
plication?

6.1 What is the storage layer for in iOS applica-
tions?

This is a broad, open-ended question that could be asked in many forms. Ef-
fectively your interviewer is trying to gauge how you work with data, state, and
persistence in iOS applications.

Expected Answer: The storage layer is responsible for storing data and keep-
ing track of state. Objects and classes in this layer perform storing, saving,
persisting, and mapping/serialization operations on data that other layers of the
apps, such as the service layer, provide. At the end of the day you’ll have
things as simple as in-memory arrays and dictionaries and as complex as your
own custom model objects and Core Data and Realm databases in this layer.
The main point is that this layer decouples everything related to data storage
and persistence from other classes and layers of your application.

Here’s a typical set of classes that you’d have in your storage layer:

• a wrapper around Keychain

78

• a wrapper around NSUserDefaults

• a wrapper around file manager

• a wrapper around AVFoundation to store or retrieve audio and video files
to/from disk

• Repository object that performs actually read and write to disk or
database

• NSManagedObjects and its subclasses used to persist your domain model
objects to Core Data (if you use Core Data)

• Post custom domain model class that represents instances of each post
in your application

• PostsStorage object that initiates storing/fetching of Post models us-
ing a repository object and mapping its NSManagedObject results
to Post model objects

Red Flag: This is not really a red flag, but quite often developers think that
only Core Data or Realm belong in the storage layer. In fact, you don’t have to
use either of those technologies, and sometimes a simple in-memory array of
objects will suffice. Use only what you need in your specific context.

6.2 What can you use to store data on iOS?

Interviewers ask this question to grasp your understanding of what tools and
ways you have available to store and persist data on iOS.

Expected Answer: Generally there are the following ways to store data in
order from simple to complex:

• In-memory arrays, dictionaries, sets, and other data structures

79

• NSUserDefaults/Keychain

• File/Disk storage

• Core Data, Realm

• SQLite

In-memory arrays, dictionaries, sets, and other data structures
are perfectly fine for storing data. They are fast and simple to use. The main
disadvantage though is that they can’t be persisted without some work and can’t
be used to store large amounts of data.

NSUserDefaults/Keychain are simple key-value stores. One is insecure
and another one is secure respectively. Advantages are that they are easy to use,
relatively fast, and are actually able to persist things to disk. Disadvantages are
that they were not made as a replacement for databases and can’t handle large
amounts of data or extensive querying.

File/Disk storage is actually a way of writing pieces of data (serialized
or not) to/from a disk using NSFileManager. The great thing about it is that
it can handle big files / large amounts of data but the disadvantage is that it was
not made for querying.

Core Data or Realm are frameworks that simplify work with databases. They
are great for large amounts of data and perfect for querying and filtering. Dis-
advantages are the setup overhead and learning curve.

Red Flag: You should be aware of different ways you could store data on iOS
and their advantages or disadvantages. Don’t limit yourself to only one solution
that you’re used to (like Core Data, for example). Know when one is preferable
over the other.

80

6.3 What is NSCoding?

NSCoding is a widely used protocol for data serialization necessary for some
of the data-storing operations using NSUserDefaults, NSFileManager, and
Keychain. Interviewers will most likely ask this as part of a discussion about
storage options on iOS, NSUserDefaults, Keychain, and so on.

Expected Answer: NSCoding is a Cocoa protocol that allows objects that
adopt it to be serialized for NSUserDefaults, NSFileManager, or Keychain
storage. The way it works is you implement the init?(coder decoder:
NSCoder) and encodeWithCoder methods in the objects that comply to that
protocol. Those methods decode and encode the object respectively for persis-
tence and retrieval.

The gotcha with implementing NSCoding is that every property that you en-
code and decode needs to comply to the NSCoding protocol as well. All the
“primitive” values such as String, Number, and Int already do that and ev-
ery custom object that you’re trying to serialize as one of the properties needs
to comply to that protocol as well.

Red Flag: NSCoding is one of the fundamental protocols to use “lightweight”
persistence implementation in iOS applications. Every iOS dev should be fa-
miliar with it.

6.4 What is NSUserDefaults?

NSUserDefaults is one of the common tools used in virtually every appli-
cation for lightweight storage. Every iOS developer should be familiar with
it.

Expected Answer: NSUserDefaults is a key-value storage that can persist
serialized NSCoding compliant objects and primitives. Unlike Keychain, it is
not secure and does not persist between app uninstalls. It’s main purpose is to
store small objects that are easily retrievable but also not important to lose.

81

A typical use case for it is some locally stored user preferences and/or flags.
Do not use it as a database replacement because it was not built for extensive
querying or for handling large amounts of data.

Red Flag: Using user defaults for data that needs to be secure is a red flag. For
example, you would never want to store a user’s password or access token in
user defaults; use Keychain for that instead.

6.5 What is Keychain and when do you need it?

Storing data securely is important for every iOS app, big or small. This ques-
tion is assessing your experience with iOS secure key-value storage.

Expected Answer: Keychain is a secure alternative to NSUserDefaults. It
is a key-value store that is encrypted by the system and persists between app
reinstalls unlike other types of data such as NSUserDefaults, files on disk,
and Core Data databases. The advantage of Keychain is that it is secure, but
the disadvantage is that its API is difficult to use.

The main use case for Keychain is to store small objects and primitives, such
as tokens and passwords, securely. Use it instead of NSUserDefaults for
that purpose, and just like with NSUserDefaults do not use it to store large
amounts of data, such as databases, images, and videos.

Red Flag: You should be familiar with Keychain and what it’s used for. The
main red flag would be to either say that you use it instead of NSUserDefaults
or vice versa. Both have their own purpose.

6.6 How do you save data to a disk on iOS?

Storing files on a disk is a more or less common thing to do in iOS applications.
Don’t expect this question that often, but note that it could come up from time
to time in the context of storage.

82

Expected Answer: File storage is used to persist large amounts of data on a
disk such as images, videos, and other kinds of files. NSFileManager is the
class you would use to manipulate you app’s folder on a disk. It is capable of
creating subdirectories and storing files. You can store or read any NSData ob-
ject whether it’s an image, video, or an object serialized through the NSCoding
protocol.

Red Flag: There isn’t a specific red flag for this question. File disk storage is
often not used directly because these days there are a lot of libraries and pods
that take care of that low-level detail for you. But as a good iOS dev you need
to be familiar with NSFileManager and how you can use it to persist stuff on
disk.

6.7 What database options are there for iOS ap-
plications?

Interviewers ask this question to gauge your experience with database solutions
on iOS.

Expected Answer: The go-to database solution on iOS is Core Data. There is
also an option to use SQLite directly but tools are not that advanced for that, so
you’ll have to come up with some customizations of your own.

Another popular database framework is Realm. Each one of them has their own
advantages and disadvantages.

Core Data is an object graph and persistence framework that is the go-to solu-
tion for local database storage on iOS. Advantages of that framework are that it
is widely used and is supported by Apple. You can use it almost out of the box
in your project, and it does a decent job of persisting data and making querying
more or less straightforward.

A disadvantage is that the Core Data API is not that easy to use in some scenar-
ios and specifically in a multi-threading environment. Another big disadvan-
tage of Core Data is that there’s a learning curve to it since it is not a straight-

83

forward addition on top of a relational database where each object represents a
row in a table (like in ActiveRecord, for example), but rather an object graph
storage.

Realm is an alternative to the Core Data database solution. It was built from
the ground up to be easier to use and faster than Core Data or SQL. Advantages
of Realm are that it’s fast, has reactive features, is easier to use, is secure, and
has entire cloud platform for syncing and other more advanced features. A
disadvantage is that it is still in development - although the Realm team made
a lot of progress recently - and as of the time of this writing, it doesn’t have
all the features on par with Core Data’s NSFetchedResultsController.
There are also issues with the size of realm databases. Due to their playback
feature, it has to store way more data to replay the events that happened as
compared to Core Data or SQL, which stores only the latest snapshot without
keeping a history of all the changes.

Realm has a lot of potential to become the most popular solution for database
storage on iOS in the long run, especially with all the backend/syncing func-
tionality they are building into it.

SQLite is a relational database that powers Core Data under the hood. It can
be accessed directly on iOS and used without Core Data, but it will require
implementing custom tooling for accessing, reading, and writing to it. The
main advantages of using SQLite directly are that it is going to be fast, and if
you have SQL skills you can leverage them. The main disadvantage though is
that you’ll have to do all the heavy lifting of setting things up and accessing
and migrating the database yourself; there are no good tools out there to help
with that.

Red Flag: These days saying that there’s only Core Data on iOS for databases
would raise a red flag because the expectation is that developers are constantly
looking for better solutions and are aware of other alternatives such as Realm
or SQLite.

84

6.8 How is data mapping important when you store
data?

Interviewers will most likely ask this question as part of a general discussion
around the storage layer and the responsibilities it has. Just like with the ser-
vice/networking layer, you need to understand the vital parts of it and what
functions it performs, even if they are hidden by a library or a framework you
use.

Expected Answer: One of the three main purposes of the storage layer, be-
sides actually storing and persisting the data, is data serialization. Just like
when you get data in the service layer in JSON or another format from exter-
nal APIs and then serialize and map it into your custom domain model in the
storage layer, you will need to serialize and map your data to and from your
custom domain model objects to the format that your storage understands. The
“mapping” chain for reading data looks like this: db -> raw data format
-> custom domain models. And for writing like this: custom domain
models -> raw data format -> db.

For example, that means that if you use Core Data, then serialization of your
data that you’ll make before saving it in Core Data will be mapping it to
NSManagedObjects and then saving those to the Core Data database. And
vice versa, when you need to retrieve data from Core Data, you’ll create a
predicate to query it and then you’ll get back a bunch of NSManagedObjects
and/or their subclasses as the result. You’ll then need to map those objects into
your own custom domain model objects to be able to easily work with them.

Specifically, in the case of NSManagedObjects, there are different approaches
to working with data and quite often NSManagedObject subclasses are used
directly as model objects throughout application. It is convenient after all to use
them since mapping of values and properties is easily defined in the Core Data
entity schema UI in Xcode. But there’s a disadvantage to that approach that lies
in coupling of responsibilities in NSManagedObject subclasses. If you use
them throughout your application as domain models, then you couple yourself
to Core Data directly and carry all the functionality of NSManagedObject

85

with them throughout the application. This issue is especially apparent when,
inevitably, issues with multi-threading and concurrency arise. A cleaner way
of doing it would be to use NSManagedObject and/or its subclasses only for
data persistence and retrieval and use your own custom objects throughout the
application as domain models.

Another example of similar mapping and serialization that you’ll have to do
would be NSCoding protocol serialization. If you use NSUserDefaults for
storage of custom objects in your app then you’d need to do a similar serializa-
tion step. It is not that apparent because you typically implement the NSCoding
protocol on your actual domain model objects, but effectively you go through
the same process of retrieving data and then mapping it to your custom objects
(or serializing your custom objects to raw data and then saving them). For
reading, it would look like this: NSUserDefaults -> NSData -> your
custom object. And for writing: your custom object -> NSData >
NSUserDefaults. The reason it is not apparent is because the NSData ->
model mapping step is “hidden” thanks to the NSCoding protocol, and you get
your objects back without that intermediate step. But the same argument about
coupling as with Core Data’s NSManagedObject could apply, and it would
be valid. But the difference between implementing NSCoding and coupling
yourself to it and inheriting from NSManagedObject is that in one case it is a
loose coupling to an interface and in the other case it is a tight coupling to an
implementation. As you’ll read in Chapter 8, according to SOLID principles,
it’s always better to couple yourself as loosely as possible.

Red Flag: The main red flag for this question is not being aware of serializa-
tion actually happening in the storage layer. Even if you don’t implement it
yourself explicitly, you should still be aware of its existence and of the cost
you’re paying for hiding that implementation and coupling yourself to a library
or a framework.

86

6.9 How would you approach major database/storage
migration in your application?

This question could be a part of an architectural discussion or come out of
refactoring talks with your interviewer. Typically interviewers for bigger teams
that are concerned with maintainability of the code ask this question.

Expected Answer: In practice, database or underlying storage migrations hap-
pen very rarely on iOS applications. Typically codebases end up getting stuck
with whatever they picked as the initial storage/database solution (quite often
Core Data). But there’s a way you could organize your code using the Single
Responsibility Principle where your codebase will be completely decoupled
and agnostic of the persistence framework you use.

The main idea is to have a clear separation between your code that needs to
access and use data from the database and the code that actually knows what
database to use and how to access data in it. Typically that role is played by
some kind of storage object that is the main object responsible for getting
data in and out of database for the rest of the application. Internally that object
would use one or more other objects that actually know how to work with
an underlying database, let’s say Core Data. And only those objects in the
storage class actually refer to Core Data and know how to query it and how
to write to it.

Since the rest of the application doesn’t know anything about Core Data or
whatever database solution you use, when the time comes, you could easily
swap the underlying database for Realm, for example. You’d have to write
some data migration code that will map and copy data from the existing Core
Data to the new Realm. But the main approach will remain the same - the rest
of your application continues to rely on the storage object to get the data and
that object knows how to actually work with it.

This decoupling and Single Responsibility approach is described in detail in the
bonus chapter, Storage Evolution. In that chapter we’ll go through an example
of the PostsStorage class that will start as simple in-memory storage, and

87

we will evolve and migrate it to use NSUserDefaults, then file/disk storage,
and then eventually Core Data, keeping PostsStorage’s API consistent and
unchanged throughout the whole process while the rest of the app will have no
idea that we used various persistence solutions under the hood.

6.10 Conclusion:

The storage layer is one the building blocks of every iOS application. There are
various approaches to storage and persistence when it comes to iOS apps, and
a good developer knows what options are available and knows when to pick the
right type of persistence solution.

This chapter gives you an overview of questions and answers around storage on
iOS. If you want a practical example of all of the types of storages mentioned
in this chapter, please look at the bonus chapter of this book, Chapter 9 Storage
Evolution (AKA You Don’t Always Need Core Data!).

88

Chapter 7

Step Six: Go crazy
responsive with UI layouts

Quite often, creating a UI is one of the biggest parts of an iOS project. Being
able to make it viewable on different-sized screens is a very crucial skill for any
kind of project and team. Back in the day, we were only able to do frame size
calculations and a little bit of auto-resizing masks. These days we have Auto-
Layout. The problem is it is notoriously difficult to work with and especially
to debug.

But there’s hope - there are libraries like Masonry that help you to declaratively
define your AutoLayout constraints in code.

This chapter is going to be especially useful if you’re applying for a company
that is heavy on UI and values design a lot.

Interview questions covered in this chapter:

• What are the challenges in working with UI on iOS?

• What do you use to lay out your views correctly on iOS?

• What are CGRect Frames? When and where would you use them?

89

• What is AutoLayout? When and where would you use it?

• What are compression resistance and content hugging priorities for?

• How does AutoLayout work with multi-threading?

• What are the advantages and disadvantages of creating AutoLayouts in
code versus using storyboards?

• How do you work with storyboards in a large team?

• How do you mix AutoLayout with Frames?

• What options do you have with animation on iOS?

• How do you do animation with Frames and AutoLayout?

• How do you work with UITableView?

• How do you optimize table views performance for smooth, fast scrolling?

• How do you work with UICollectionView?

• How do you work with UIScrollView?

• What is UIStackView? When would you use it and why?

• What alternative ways of working with UI do you know?

• How do you make a pixel-perfect UI according to a designer’s specs?

• How do you unit and integration test UI?

90

7.1 What are the challenges in working with UI on
iOS?

This question is typically asked to assess whether you understand that it’s not
that simple and straightforward to do UI on iOS anymore. Now we have mul-
tiple screen sizes and resolutions, not to mention iPad and Multi-Tasking sup-
port, where your views and view controllers can be displayed in various forms
and formats.

Expected answer: Show them that you are aware of the responsive and ad-
justable nature of iOS UI. There are several things you as a developer need to
be concerned with when developing UI for iOS:

• multiple screen sizes/dimensions for iPhone 5, 6, 6 Plus, etc.

• multiple screen sizes/dimensions for iPads

• potential reusability of UIViews between iPhone and iPad

• adaptability of your UI to resizable views used for multi-tasking feature
on iPad (i.e., size classes)

• UI performance, especially with dynamic content of various sizes in
UITableViews and UICollectionViews

Mentioning all of the concerns above show that you are aware of the issues.
Also, it is good if you mention here that Apple has AutoLayout to address a
lot of the challenges related to UI scalability and that it is a replacement of
the previously used Frames and auto-resizing masks approach. These answers
will likely make your interviewer steer toward a Frames versus AutoLayout
discussion.

Table views and collection views’ performance is especially important for so-
cial networking applications, for example. They typically have content of arbi-
trary size posted by users that need to be displayed in lists. The challenge there

91

is to quickly calculate cell and other UI elements’ sizes when the user scrolls
the content quickly. Mentioning that will most likely prompt your interviewer
to ask probing questions about Frames, AutoLayout, and UITableView/UICollectionView.

Red flag: Not mentioning various iPhone/iPad screen sizes and not mentioning
AutoLayout as one of the solutions most likely is going to raise a flag.

7.2 What do you use to lay out your views cor-
rectly on iOS?

Knowing your options for laying out things on the screen is crucial when you
need to solve different UI challenges on iOS. This question helps gauge your
knowledge about how you put and align views on the screen. When answering
this question you should at least mention CGRect Frames and AutoLayout, but
it would be great to mention other options such a ComponentKit and other
Flexbox and React implementation on iOS.

Expected answer: Go-to options for laying out views on the screen are good
old CGRect Frames and AutoLayout. Frames, along with auto-resizing masks,
were used in the past before iOS 6 and are not a preferred option today. Frames
are too error-prone and difficult to use because it’s hard to calculate precise
coordinates and view sizes for various devices.

Since iOS 6 we have AutoLayout, which is the go-to solution these days and
is preferred by Apple. AutoLayout is a technology that helps you define re-
lationships between views, called constraints, in a declarative way, letting the
framework calculate precise frames and positions of UI elements instead.

There are other options for laying out views, such as ComponentKit and Lay-
outKit, that are more or less inspired by React. These alternatives are good
in certain scenarios when, for example, you need to build highly dynamic and
fast table views and collection views. AutoLayout is not always perfect for that
and knowing there are other options is always good.

Red flag: Not mentioning at least AutoLayout and the fact that Frames are

92

https://github.com/facebook/componentkit
https://github.com/linkedin/LayoutKit
https://github.com/linkedin/LayoutKit

notoriously hard to get right is definitely going to be a red flag for your inter-
viewer. These days no sane person would do CGRect frame calculations unless
it is absolutely necessary (for example, when you do some crazy drawings).

7.3 What are CGRect Frames? When and where
would you use them?

This question is asked to learn if you have a background in building UI “the
hard way” with using view position and size calculation. Before AutoLayout,
Frames were used to position UI elements on the screen but these days there
are other options you have to solve that problem. The interviewer is trying to
figure out how advanced you are in UI rendering and how well you know a
lower level of it.

Expected answer: The simplest way to position views on the screen is to give
them specific coordinates and sizes with CGRects. CGRect is a struct that
represents a rectangle that a view is placed at. It has origin with x and y
values, and size with width and height values. They represent the upper-
left corner where the view starts to draw itself and the width and height of that
view respectively. Frames are used to explicitly position views on the screen
and have the most flexibility in terms of what and how you position views on
the screen. But the disadvantage is that you have to take care of everything
yourself (with great power comes great responsibility, you know), meaning
even though you’re in full control of how your UI is drawn on the screen, you
will have to take care of all the edge cases and the different screen sizes and
resolutions.

A better option these days is AutoLayout. It helps you with layout positioning
through constraints and sets specific frames for views for you. It makes your
views scalable and adaptive to different screen sizes and resolutions.

Red flag: AutoLayout is the de facto standard for doing layouts these days.
Frames are considered to be an outdated concept that is very error prone. Say-

93

ing that frames are perfectly fine for laying out views would raise a red flag
because most likely your interviewer would think that you don’t know how to
build adaptive and responsive UI.

7.4 What is AutoLayout? When and where would
you use it?

This is a very common UI-related question on any interview. Virtually no in-
terview will go without it. AutoLayout is one of the fundamental technologies
that Apple pushed for for some time and now it is the de facto standard. Your
interviewer is either expecting a very brief answer to get an understanding of
whether you’re versed in the topic or is going to drill down and ask you for all
the details about it. Be prepared for both.

Expected answer: AutoLayout is a technology that helps you define relation-
ships between views, called constraints, in a declarative way, letting the frame-
work calculate precise frames and positions of UI elements instead. AutoLay-
out came as an evolution of previously used Frames and auto-resizing masks.
Apple created it to support various screen resolutions and sizes of iOS devices.

In a nutshell, using AutoLayout instead of setting view frames, you’ll cre-
ate NSLayoutConstraint objects either in code or use nibs or storyboards.
NSLayoutConstraints describe how views relate to each other so that at
runtime UIKit can decide what specific CGRect frames to set for each view.
It will adjust to different screen sizes or orientations based on the “rules” you
defined using constraints.

The main things you’ll be using working with AutoLayout are NSLayout-
Relation, constant, and priority.

• NSLayoutRelation defines the nature of a constraint between two UI
items/views. It can be lessThanOrEqual, equal, or greaterThan-
OrEqual.

94

• constant defines constraint value. It usually defines things like the
distance between two views, or the width of an item or margin, etc.

• priority defines how high of a priority a given constraint should take.
Constraints with a higher priority number take precedence over the oth-
ers. Priority typically is used to resolve conflicting constraints. For
example, when there could be an absence of content, we may want to
align elements differently. In that scenario we’d create several constraints
with different priority.

Bonus points: Working with Apple’s API for constraints in code is sometimes
problematic and difficult. There are several different open source libraries out
there that can help with it, such as Masonry and PureLayout, that dramatically
simplify the process.

Red flag: AutoLayout is the de facto standard today for developing UI on iOS.
Disregarding it or trying to prove that the Frames approach is better most likely
going to raise a red flag. There are alternatives of course but most likely your
interviewer expects you to be very familiar with the technology since it’s such
a vital part of any iOS application.

7.5 What are compression resistance and content
hugging priorities for?

This is an advanced question about AutoLayout typically asked along with
other questions around constraints.

Expected answer: Compression resistance is an AutoLayout constraint that
defines how your view will behave while under the pressure of other constraints
demanding its resizing. The higher compression resistance is, the less chance
it’s going to “budge” under the other constraint’s pressure to compress it.

Hugging priority is the opposite of compression resistance. This constraint
defines how likely it it the view will grow under pressure from other constraints

95

https://github.com/SnapKit/Masonry
https://github.com/PureLayout/PureLayout

Red flag: You should be familiar with these constraints if you worked with
AutoLayout extensively.

7.6 How does AutoLayout work with multi-threading?

Pretty much every iOS application these days has some kind of multi-threading.
Interviewers ask this question to gauge your general understanding of how to
work with the main thread and background threads and with UI in particular.

Expected answer: All UI changes have to be done on the main thread. Just
like working with Frames, working with AutoLayout is UI work and it needs
to be performed on the main UI thread. Every AutoLayout constraint’s addition
or removal or constant change needs to be done on the main thread. After you
change constraints, call the setNeedsLayout method.

Red flag: Saying you can change AutoLayout constraints in any thread will
raise a red flag.

7.7 What are the advantages and disadvantages of
creating AutoLayouts in code versus using sto-
ryboards?

Bigger teams sometimes ask this question because they experience particular
challenges when it comes to working with UI using storyboards. There’s no
right or wrong answer here; every approach has its advantages and disadvan-
tages.

Expected answer: Working with AutoLayout in storyboards is considered to
be more typical, and Apple pushes a lot of examples showing how to do that.
The advantages are that it’s visual, drag-and-drop/plug-and-play-able, and you
can, in some scenarios, actually render your UI in Interface Builder without
actually running the app and waiting for the entire build process to happen.

96

Neat. But the disadvantages are very apparent when you need to debug your
constraints or work in a team of more than two people. It is difficult to tell
what constraints need to be there and what constraints need to be removed at
a glance. And quite often, teams working with one storyboard modify it in
different git branches, causing merge conflicts.

Also, the advantages of defining AutoLayout in code are that it’s very explicit,
clear, and merge- and conflict-free. Disadvantages, on the other hand, are that
it’s difficult to work with Apple’s AutoLayout constraints API in code (it can
be helped if you use a library like Masonry) and you have to compile your app
to see the results of rendering.

7.8 How do you work with storyboards in a large
team?

Bigger teams ask this question. They especially suffer from a poor team devel-
opment support from Apple tools.

Expected answer: The main problem when working with storyboards in a big
team is dealing with .storyboard file merge conflicts. When two developers
change the same storyboard in different branches, they most likely will have
a merge conflict. The benefits a unified monolith storyboard gives are quickly
outweighed by the struggle teams experience with those merge conflicts. There
are two solutions:

1. Don’t use storyboards and define your AutoLayout in code.

2. Split your monolithic storyboard into multiple storyboards, typically one
per view controller. That way, storyboard changes will happen only when
one view controller is modified, which likely will help you avoid most of
the merge conflicts.

97

https://github.com/SnapKit/Masonry

7.9 How do you mix AutoLayout with Frames?

This question could be asked by a team that has an existing application and
they are trying to either migrate to AutoLayout fully or to support both Frames
and AutoLayout at the same time for legacy reasons.

Expected answer: AutoLayout and Frames can coexist together only in sce-
narios when you’re not mixing them up directly. Basically, you can have a
superview lay out itself and its subviews using constraints and have one or all
of those subviews position themselves with frames. Views that need to use
frames will have to override the layoutSubviews() method where they can
do the precise calculations for CGRects necessary to align things in them.

Red flag: Never say that you can just simply change frames of views that use
AutoLayout. That would not work because with AutoLayout, frames are set by
the system based on the constraints you’ve created.

7.10 What options do you have with animation on
iOS?

Interviewers ask this question to probe your level of experience with animation
on iOS. Depending on the team and project focus you could either answer
briefly or extensively about each option available.

Expected answer: There are three major things you can use on iOS to animate
your UI: UIKit, Core Animation, and UIKit Dynamics.

• UIKit is the basic animation that is used the most often. It can be trig-
gered by running the UIView.animateWithDuration() set of meth-
ods. Things that are “animatable” this way are frame, bounds, center,
transform, alpha, and backgroundColor.

• Core Animation is used for more advanced animation, things that UI-
Kit isn’t capable of doing. With Core Animation, you will manipulate

98

the view’s layer directly and use classes like CABasicAnimation to
set up more complex animations.

• UIKit Dynamics is used to create dynamic interactive animations. These
animations are a more complex kind where the user can interact with
your animation half-way through and potentially even revert it. With
UIKit Dynamics you’ll work with classes like UIDynamicItem. Note:
there’s also a very handy dynamics animation library by Facebook called
Pop that can help with it.

Red flag: Most likely your interviewer won’t expect you to be very familiar
with advanced animation techniques unless you claim that you’re an expert.
But nevertheless, you should be at least aware of other options beyond UIKit
animations.

7.11 How do you do animation with Frames and
AutoLayout?

This is a more specific question about views animation. Depending on the
project and team focus they either would like to know how you handle basic
animations or they want to know if you know how to work with advanced
animations using Core Animation.

Expected answer: Most likely talking about how to animate views with UIKit
is sufficient enough. With frame-based views you simply change frames in
UIView.animateWithDuration:animations: and then assign new frames
to your views and that’s it - the animation will be performed. It’s almost
the same thing with AutoLayout, but instead of changing frames directly you
change your constraints and their constants in the animations: block of
the UIView.animateWithDuration:animations: method and then call
layoutIfNeeded() on the views you’ve changed.

99

https://github.com/facebook/pop

7.12 How do you work with UITableView?

UITableView is one of the most used and important UI classes in iOS appli-
cations. You can expect this question in one form or another on pretty much
any interview. The extent of your answer will vary, and if interviewers wants
to dig deeper, they’ll ask additional questions around table views.

Expected answer: UITableView is a class that lets you display a list of static
or dynamic content of variable or set heights with optional section grouping.
Each row in a table is a UITableViewCell class or subclass. Table views and
cells can be as complex or as simple as the application demands. Two of the
biggest constraints on mobile devices are memory and performance. This is
why table views are designed to dequeue and reuse UITableViewCells they
are displaying instead of creating new objects as user scrolls. It helps avoid
memory bloat and improves performance.

When you work with UITableView you usually instantiate an instance of it
and then implement UITableViewDelegate and UITableViewDataSource
protocols.

• UITableViewDelegate is responsible for calculating cells’ and sec-
tions’ heights (unless it’s done automatically with UITableViewAutomatic-
Dimension) and for the other cell and section life cycle callbacks like
tableView(UITableView, willDisplay: UITableViewCell,
forRowAt: IndexPath) and tableView(UITableView, did-
SelectRowAt: IndexPath). It also dequeues section views.

• UITableViewDataSource is the source of data for the table. It pro-
vides the model data your table is displaying. It is also responsible for
dequeuing cells for specific indexPath.

100

7.13 How do you optimize table views performance
for smooth, fast scrolling?

One of the important questions that is sometimes asked on interviews along
with UITableView questions is a question about table view scrolling perfor-
mance.

Expected answer: Scrolling performance is a big issue with UITableViews
and quite often can be very hard to get right. The main difficulty is cell height
calculation. When the user scrolls, every next cell needs to calculate its content
and then height before it can be displayed. If you do manual Frame view lay-
outs then it is more performant but the challenge is to get the height and size
calculations just right. If you use AutoLayout then the challenge is to set all the
constraints right. But even AutoLayout itself could take some time to compute
cell heights, and your scrolling performance will suffer.

Potential solutions for scrolling performance issues could be

• calculate cell height yourself

• keep a prototype cell that you fill with content and use to calculate cell
height

Alternatively, you could take a completely radical approach, which is to use dif-
ferent technology like ComponentKit. ComponentKit is made specifically for
list views with dynamic content size and is optimized to calculate cell heights
in a background thread, which makes it super performant.

7.14 How do you work with UICollectionView?

This is the same questions as the one about UITableView. Your interviewer is
trying to figure out if you’ve worked with more complex UIs for lists of items.

101

https://github.com/facebook/componentkit

Expected answer: UICollectionView is the next step from UITableView
and it was made to display complex layouts for lists of items - think a grid
where you have two or more items in a row or a grid where each item could
be a different size. Each item in a UICollectionView is a subclass of UI-
CollectionViewCell. UICollectionView mimics UITableView in its
API and has similar UICollectionViewDelegate and UICollection-
ViewDataSource to perform the same functions.

A very distinct feature of UICollectionView is that unlike UITableView
it is using UICollectionViewLayout to help it lay out views it is going to
display in its list.

7.15 How do you work with UIScrollView?

UIScrollView is a very common UI component used in iOS apps. Interview-
ers typically ask this question to gauge your level of experience working with
either big, scrollable and zoomable content or gauge your level of understand-
ing of UITableView and UICollectionView.

Expected answer: UIScrollView is responsible for displaying content that
is too big and cannot be fully displayed on the screen. It could be a big picture
that the user can pinch to zoom or it could be a list where all of the items cannot
be displayed on the screen at the same time. UIScrollView is a superclass
of UITableView, UICollectionView, and UITextView; therefore, all of
them get the same features as UIScrollView.

When you work with UIScrollView, you define yourself as its delegate by
adopting the UIScrollViewDelegate protocol. There are a lot of meth-
ods that you get with that delegate but the main one you usually work with
is scrollViewDidScroll(UIScrollView). In this method, you can do
additional work when the user scrolls table view content, for example.

102

7.16 What is UIStackView? When would you use
it and why?

UIStackView is a powerful new way to lay out views of various sizes in a
container into a column or a row. Interviewers ask this question to determine
how up to date you are with the latest UI tools from Apple. UIStackView was
introduced in iOS 9, but a surprising number of developers never heard about
it.

Expected answer: UIStackView is used to align views in a container and
“stack” them one after another. If you ever worked with flexbox on the web or
with linear layouts on Android, the concept will be familiar to you. Before iOS
9, you had to align your UI in a stack using constraints manually; it was very
tedious and error prone, especially if you had to change the contents of your
stack view at runtime. With UIStackView, it is as simple as a drag-and-drop
in storyboards, and programmatically you add or remove views from the stack
with just one command. UIStackView will take care of resizing for you.

Note: Be very cautious of using UIStackView in a table view cell. Due to its
dynamic sizing nature, it could negatively affect scrolling performance.

7.17 What alternative ways of working with UI do
you know?

This is an advanced question that interviewers ask to gauge how well informed
you are of current trends in UI development.

Expected answer: Talk about React and React-like trends in UI development
on the web and iOS. There’s React Native, which is a great alternative for
declarative UI development, but unfortunately, it comes with JavaScript bag-
gage. There are also libraries like ComponentKit, LayoutKit, and IGListKit
that take a different approach from Apple’s AutoLayout.

103

https://github.com/facebook/componentkit
https://github.com/linkedin/LayoutKit
https://github.com/instagram/IGListKit

Red flag: You probably shouldn’t say that you’ve never heard of other ap-
proaches. It’s fine if you never had a chance to try them out in real apps,
though.

7.18 How do you make a pixel-perfect UI accord-
ing to a designer’s specs?

Teams that are very heavy on design and sleek UI typically ask this question.

Expected answer: The short answer is you don’t. The long answer is that
it depends. It depends on how you define “pixel-perfect UI.” Ideally, if your
designer thought through all the edge cases of your UI laid out on various
devices sizes and talked to you about cases where there’s no content, and so
on, then you could hypothetically build a “pixel-perfect UI.” But, in reality,
that’s often not the case; you discover inconsistencies or edge cases in UI and
UX as you build them. Designing UI/UX is not a finite thing - it’s a constantly
evolving process that is never done. Your best bet is to do your best today and
have a short and quick feedback loop with your designer and stakeholders to
adjust the UI/UX as you go.

Red flag: Don’t say that you “just use a Photoshop or Sketch file and eyeball
it.”

7.19 How do you unit and integration test UI?

Interviewers typically ask this question in addition to or as a part of a bigger
unit-testing question. There’s a lot of controversy around testing on iOS in
general.

Expected answer: Tooling around UI testing is not as well developed on iOS
as it is for other platforms. The options you have today are libraries like Cedar
that are built on top of Apple’s OCUnit. But when using those you’ll have to

104

https://github.com/pivotal/cedar

do all the heavy lifting of setting it up, instantiating the UI, filling it with data,
and so on.

There’s a very promising alternative though - LayoutTest-iOS.
LayoutTest-iOS helps you test your UI and automates a lot of tedious setup,
AutoLayout constraint checks, data variations, and other things.

Red flag: Saying that you don’t test your UI is not a red flag per se but you
should at least acknowledge that if you don’t do it, you should be doing it.

7.20 Conclusion

UI questions are very common on iOS interviews because virtually more than
half the time spent building iOS apps will be views-related work. For some
apps it is crucial to build a sleek and nice UI; others can go by with just bare
bones. As usual, things you should keep in mind are reusability and the single
responsibility principle. If your UI is not tightly coupled to other parts of your
app then it’s going to be very easy to update it if it’s not perfect or if specs have
changed.

105

https://linkedin.github.io/LayoutTest-iOS/

106

Chapter 8

Step Seven: Beyond MVC.
Design Pattens, Architecture,
FRP, and Dependencies
Management.

Understanding design patterns and architecture is what distinguishes great de-
velopers from just good ones. They are the hardest concepts to grasp, but they
give you the best return if you take time to study and practice them.

Design patterns give you a common language to use to talk about concepts in
your code with other developers. They improve the readability and testability
of your code.

Architecture helps you build maintainable software that is easy to change be-
cause the only thing constant in software development is that software is going
to change.

In this chapter we’ll cover questions about general programming, and iOS
specifically, architecture and design patterns. The topics will vary from good
old MVC, Delegate, Singleton, and so on, to SOLID and FRP.

107

Interview questions covered in this chapter:

• What design patterns are commonly used in iOS apps?

• What is MVC?

• What is MVVM?

• What are the common layers of responsibility that an iOS application
has?

• What are the SOLID principles? Can you give an example of each in
iOS/Swift?

• How do you manage dependencies in iOS applications?

• What is functional programming (FP) and functional reactive program-
ming (FRP)?

• What are the design patterns besides common Cocoa patterns that you
know of?

8.1 What design patterns are commonly used in
iOS apps?

This question is a common one on interviews for positions of all levels, maybe
with the exception of junior positions. Essentially the idea is that in working
with the iOS platform, you as a developer should be familiar with commonly
used techniques, architecture, and design patterns used on iOS.

Expected Answer: Typical commonly used patterns when building iOS ap-
plications are those that Apple advocates for in their Cocoa, Cocoa Touch,
Objective-C, and Swift documentation. These are the patterns that every iOS
developer learns. They include MVC, Singleton, Delegate, and Observer.

108

8.1.1 MVC

The good old Model-View-Controller is Apple’s go-to application architecture
design pattern. It’s good for small/simple apps, but not sustainable in the long
run. We’ll cover it in more details in the following section.

8.1.2 Singleton

This is a common OOP design pattern where you create the one and only in-
stance of a class that will be used everywhere in the application where an in-
stance of that class is necessary. This is a useful design pattern but commonly
overused to the point of becoming an anti-pattern. The main issue is that de-
velopers often use singletons to store a global state which is never a good idea
due to race conditions and other types of data overrides that inevitably happen.

8.1.3 Delegate

Delegate is one of the core Cocoa design patterns. It is a variation of the Ob-
server pattern where only one object can observe or be delegated to events
from another object. It’s a one-to-one relationship that is implemented through
protocols. Cocoa itself uses this pattern a lot with UITableViewDelegate,
UITableViewDataSource, UIPickerViewDelegate, and similar proto-
cols that are exposed by the framework for developers to use. (We also dis-
cussed Delegate in the fundamentals chapter.)

8.1.4 Observer

This pattern is a common one in iOS. It’s a design pattern that helps objects ob-
serve state changes or events in other objects without coupling that observation
to internal implementation of those objects. Developers can always implement
the Observer pattern themselves, but there are two built-in implementations in

109

Cocoa already - Delegate, one-to-one observation, and KVO (key-value ob-
serving), one-to-many observation.

Red Flag: When interviewer asks this question (in one form or another) what
they are looking for is something besides MVC. Because MVC is the go-to
design pattern, the expectation is that every iOS developer knows what it is.
What they want to hear from you though, is what else is commonly used and
available out of the box.

8.2 What is MVC?

MVC is Apple’s design pattern of choice and a question about it is unavoidable
at any iOS interview. When you are asked this question, it is a great opportunity
to spin it into a deeper conversation about software architecture and design. If
you’re applying for a mid- or senior-level position, talk in length about MVC
and its advantages, disadvantages, and alternatives.

Expected Answer: MVC stands for Model-View-Controller and is Apple’s
go-to design pattern for iOS applications. Models represent data, Views rep-
resent the UI, and Controller, the business logic. That more or less maps into

• Models being your NSObject subclasses or Core Data objects that rep-
resent your data;

• Views being your UIView subclasses and UIViewControllers that draw
things on the screen;

• Controller being your application’s logic and classes responsible for
that.

Pay attention to where UIViewController is. It is in the View layer. The reason
being that at the end of the day, it does (or should do) what it name entails -
control the view, no more, no less. Too often though, and Apple’s code ex-
amples are guilty of that too, developers put all the business logic into view

110

controllers and it quickly grows out of proportion and the whole MVC archi-
tecture becomes a Massive-View-Controller instead.

Advantages

Some architecture is better than no architecture and I can understand why Ap-
ple chose MVC as its main base design pattern of choice - it’s simple to under-
stand! Even novice developers can quickly wrap their heads around it and get
going, cranking up a bunch of views, models, and view controllers. Where it
falls short though is more complicated cases.

Disadvantages

The main disadvantage of MVC is its simplicity, which pretty quickly starts to
limit you. As I’ve mentioned previously, a lot of developers tend to abuse view
controllers and give them too much responsibility. The remedy for that is more
explicit layer boundaries and the Single Responsibility Principle in general that
we’ll talk about later in this chapter.

MVC quickly falls short in edge cases. For example, where do you put a service
object that does HTTP networking? It’s certainly not a view. Is it a model?
Nope. Is it a controller? Hmm. . . not really a controller either. . .

Alternatives

There are several things that can be done about MVC’s shortcomings but the
main two solutions are

• MVVM (Model-View-View-Model) design pattern

• SRP (Single Responsibility Principle)

MVVM helps with slimming down the notorious Massive-View-Controller by
extracting the business logic and the data out from view controllers into view
models (and ultimately other objects). SRP helps with setting firm boundaries
for your code for object responsibilities. Each of them does only one thing and
will change only for one reason. That greatly reduces the complexity of your
code and makes it more composable, maintainable, and receptive to change.

111

We’ll talk about both of those later in this chapter.

Red Flag: If you’re applying for anything beyond a junior position, it is un-
acceptable to talk about MVC as a design pattern that is the best out there
because Apple picked it. Apple is good at what they do - building hardware
and frameworks. And their goal with their documentation and sample code is
to get beginner developers up to speed as soon as possible. What they are not
good at is building apps. They never had a case for a complex and big enough
application, so following their advice with regard to architecture is wise only
in the beginning and only to a degree. If you’re working on a serious enough
application with locally stored data and an HTTP connection, you have to use
something better than MVC. As mentioned before, MVVM is a low-hanging
fruit, but you could and should go farther and apply SRP and other design and
architecture best practices to your code.

8.3 What is MVVM?

MVC is a fine pattern for the simplest apps. When you build something more
complex you need a better architectural and design approach for your codebase
than that. One of the alternatives that is embraced by the iOS community is
MVVM. This question inevitably will arise through conversations about archi-
tecture and design. Answering it well will make you stand out from the crowd
because, to my knowledge, not that many developers actually use this very
useful design pattern.

Expected Answer: MVVM stands for Model-View-View-Model. This design
pattern is effectively a subset and extension of MVC. With MVVM on iOS,
in addition to models, views, and controllers, we’d also have view models that
play an important role in data presentation and delegating business logic trig-
gered by the view layer (views and view controllers). It fits nicely into existing
MVC architectures and extends it by making it more testable and less coupled.

To illustrate where and how we use view models, consider this example:

112

import UIKit

class MyViewController: UIViewController {

private var someButton: UIButton!

private var buttonTitle: String!

convenience init(buttonTitle: String) {
self.init()

self.buttonTitle = buttonTitle
}

override func viewDidLoad() {
super.viewDidLoad()

self.someButton = self.setupButton(title: self.buttonTitle)
}

private func setupButton(title: String) -> UIButton {
let button = UIButton()
button.setTitle(title, for: .normal)
button.addTarget(self,

action: Selector(("buttonClick:")),
for: .touchUpInside)

return button
}

public func buttonClick(sender: AnyObject) {
// let's assume there's some business logic happening here
print("there's an action here that

\ relies on the state of your application")
print("such as button title - for example, \(self.buttonTitle!)")

}
}

// creating a new instance of our VC
let myVC = MyViewController(buttonTitle: "some button title")
// simulating our VC's appearance on the screen
myVC.view

// simulating the user clicking our button
myVC.buttonClick(sender: NSObject())

// output:
// there's an action here that relies on the state of your application
// such as button title - for example, some button title

113

As you can see there’s typical MVC stuff going on here. We have a view con-
troller that upon initialization takes in some state to be displayed in its button
title when the view is loaded. And it also prints that title when the user clicks
on that button.

Seems ok, doesn’t it? Well, there’s a responsibility and coupling problem here
that quite often leads to a “Massive View Controller” issue. The problem is
that our view controller is a view layer object that is responsible for displaying
a UI, but it currently also tries to get into the business of managing state and
executing business logic. The way it does it is by keeping a reference to state,
in our case the buttonTitle string that is passed to it upon initialization, and
by having the business logic in the buttonClick method.

A way to improve is to introduce a viewmodel object for business logic and
state and inject it as a dependency in our view controller:

import UIKit

class MyViewModel {

let title: String

init(title: String) {
self.title = title

}

func printAction() {
print("executing business logic")
print("printing button title: \(self.title)")

}
}

class MyViewController: UIViewController {

private var viewModel: MyViewModel!

private var someButton: UIButton!

convenience init(viewModel: MyViewModel) {
self.init()

self.viewModel = viewModel
}

override func viewDidLoad() {

114

super.viewDidLoad()

self.someButton = self.setupButton(title: self.viewModel.title)
}

private func setupButton(title: String) -> UIButton {
let button = UIButton()
button.setTitle(title, for: .normal)
button.addTarget(self,

action: Selector(("buttonClick:")),
for: .touchUpInside)

return button
}

public func buttonClick(sender: AnyObject) {
// trigger business logic here
self.viewModel.printAction()

}
}

// creating an instance of MyViewModel to keep track of state
// and to execute business logic
let myViewModel = MyViewModel(title: "some button title")

// creating a new instance of our VC and injecting our viewmodel
let myVC = MyViewController(viewModel: myViewModel)
// simulating our VC's appearance on the screen
myVC.view

// simulating the user clicking our button
myVC.buttonClick(sender: NSObject())

// output:
// executing business logic
// printing button title: some button title

So what we did here was extract all the state (title string) from our view
controller since it’s not the view controller’s responsibility to keep track of the
state. And we extracted the business logic (printAction that used to be in its
buttonClick method) from it as well. The reason is the same, it’s just a UI
and it shouldn’t know what our app does. There are many benefits of extracting
that stuff into a view model object: state decoupling, responsibility decoupling,
and better testability of your code. Now to test your business logic and state
changes, you don’t have to instantiate the view controller; all you have to do
is to create a view model, send messages to it, and examine the changes. The

115

view controller simply becomes an input device, just like terminal or voice is.

You can also do the same thing with other UIView subclasses - not only view
controllers and create view models for them when they grow out of proportion
and carry too much state and logic.

This in a nutshell is what the MVVM pattern is and what it helps with in your
code. For me personally it’s been an invaluable tool for refactoring and code
improvement that I’ve used when joining projects. Slimming down view con-
trollers is typically the lowest-hanging fruit for improvement on iOS projects.

Red Flag: MVVM is not a silver bullet, but it becomes a more and more
widespread tool for refactoring and decoupling on iOS projects. If you’re aim-
ing for something higher than a junior position, you need to at least be aware
of it and have some experience using the pattern and recognizing when it could
be of use to you.

8.4 What are the common layers of responsibility
that an iOS application has?

The interviewer will ask this question in some form when your conversation
gets deeper into architecture and the high-level concepts. You can steer the
conversation to go in a way that aligns more or less with your experience if you
want to.

Expected Answer: Every iOS application, no matter how big or small, has the
following layers of responsibility: UI Layer, Service Layer, Storage Layer,
and Business Logic Layer.

8.4.1 UI Layer

The UI Layer is responsible for displaying things on the screen. Every iOS
application has this component since every iOS app has some kind of user

116

interface. This layer includes UIWindows, UIViews, AutoLayout, UIView-
Controllers, table views, collection views, CALayers, animations, touch
events, app delegate, and other things with which the user interacts with your
app.

The main purpose of this layer of responsibility is to display UI elements on the
screen and to take user input in and delegate it to the rest of your application.
The key here is not to put too much code that is responsible for storage or
service or business logic in the UI layer because it could cause overblown view
controllers and views issues, which is never good for any codebase.

8.4.2 Service Layer:

The service layer is responsible for all external communication your applica-
tion has. HTTP API client objects and classes, Bluetooth Low Energy (BLE)
code, analytics services, third-party (non-UI-related) services, location ser-
vices, GPS/gyroscope, and the respective data mappings from JSON and other
formats to your domain objects would all constitute this layer.

The key thing here, as with every other layer, is not to mix up responsibili-
ties from other layers. For example, never put UI code inside of your service
objects. Alert pop-ups and UI updates have no business being in HTTP net-
working code, it’s the UI layer’s responsibility to handle that. Same goes for
storage - don’t save things to disk or the database in your networking code. It
doesn’t make any sense.

8.4.3 Storage Layer:

The storage layer is responsible for storing things. That layer contains your
custom domain model classes and complex things such as Core Data, Realm,
SQL, and NSFileManager. And it also has simpler storage solutions such as
NSUserDefaults, Keychain, and even in-memory arrays, sets, and dictionaries.
The idea for that layer is to abstract out and decouple everything that has to do

117

with data management and persistence. Stuff in the storage layer is supposed
to be the ultimate source of truth for your application. You should be able to
rely on it and definitely say if you have something or not; other things and data
from other layers are more temporary and ephemeral.

8.4.4 Business Logic Layer:

Into the business logic layer go objects that are responsible for the application’s
business logic - objects that use components and objects from other layers to
achieve results and the work for the user. Coordinators that use service objects
in conjunction with storages to orchestrate data receiving from backend APIs
and persistence to Core Data would be one example. Another could be a man-
ager that takes care of token encryption and saving to Keychain using Keychain
storage and some kind of encryption service. The main idea is that this layer
helps us keep services, storages, and other layers decoupled from each other
and tells them what to do to achieve results. This layer is where the actual
interesting stuff that your application does happens.

Virtually every iOS app has the previously described layers of responsibility.
Even an app that does everything locally and never connects to an HTTP API
would have to eventually track user behavior and would do so using a track-
ing/analytics service for that, which is the service layer. It definitely has some
data to store, even in its in-memory arrays, so it has a storage layer. It has some
views and view controllers to display, aka the UI layer. And of course, to be
of any use to the user, it needs to coordinate all of those things, so here’s your
business logic layer.

Red Flag: Simply answering that every iOS app has a view, model, and con-
troller as layers doesn’t cut it. Every iOS app is way more than that, and MVC
doesn’t cover a lot of edge cases when a class doesn’t strictly belong to either
a model, view, or controller. This is why you need to look at your code’s layers
of responsibility more broadly.

118

8.5 What are SOLID principles? Can you give an
example of each in iOS/Swift?

Interviewers could ask this question on senior or architect position interviews.
SOLID principles are relatively old but incredibly useful concepts to apply to
any OOP codebase in any language. Watch a few of Uncle Bob’s talks on the
topic to fully appreciate the history behind them.

On YouTube Bob Martin SOLID Principles of Object Oriented and Agile De-
sign

Expected Answer: SOLID stands for Single Responsibility Principle, Open/Closed
Principle, Liskov Substitution Principle, Interface Segregation Principle, and
Dependency Inversion Principle. These principles feed into and support each
other and are one of the best general design approaches you could take for your
code. Let’s go through each of them.

8.5.1 Single Responsibility Principle

The Single Responsibility Principle (SRP) is the most important one of them.
It states that every module should have only one responsibility and reason to
change. SRP starts with small concrete and specific cases such as a class and/or
an object having only one purpose and being used only for one thing. The idea
is that when, for example, you create a new model class called Post, its sin-
gle purpose and responsibility is to hold the data and information about a post.
It’s a model class, it should do no more, no less. It should not be accessing
the database to save itself. It should not be creating underlying comments or
changing them in any way. It should not be parsing JSON to create a new
post out it. All of those things are single responsibilities of other objects that
should not be mixed into that Post class. The Post class has only one reason
to change - it changes when we need to change the data structure of our posts
in our application. It should not change because we decided to swap the un-
derlying database to Realm from Core Data or because our backend decided to

119

https://www.youtube.com/watch?v=TMuno5RZNeE
https://www.youtube.com/watch?v=TMuno5RZNeE

return a different type of JSON.

This principle is the basis of the architecture and approach described in the
previous answer that I use myself when building any kind of application. Con-
sider this: all of those things around Post described previously are related to
the same layer of responsibility of your application - the storage layer. The
reason why they are grouped into that layer is because they are responsible for
storing things and because the only reason for them to change is when you need
to change how you store things, not when you need to change your networking
code, for example.

8.5.2 Open/Closed Principle

The Open/Closed Principle (OCP) states that your modules should be open
for extension but closed for modification. It’s one of those things that sounds
easy enough but is kind of hard to wrap your head around when you start to
think about what it means. Effectively it means that when writing your code
you should be able to extend the behavior of your objects through inheritance,
polymorphism, and composition by implementing them using interfaces, ab-
stractions, and dependency injection. If, let’s say, you have a PostsStorage
class that has a certain interface that allows you to store Post models in the
database. According to that principle, when you want to extend and add be-
havior and features to your PostsStorage, you should be able to do that
through inheritance and through injecting new dependencies into that storage.
For example, if you want to change the database that the storage saves posts
to from Core Data to Realm you have two options: either you subclass from it
and override methods that call Core Data and use Realm there instead or you
inject a different database adapter/accessor dependency that complies to the
same protocol as the Core Data one but uses Realm under the hood instead. In
both scenarios though, every object that was previously using PostsStorage
should still be able to use it as before without any changes because in both sce-
narios, the PostsStorage’s interface that they relied on hasn’t changed. We
effectively extended PostsStorage behavior without modifying it. It nicely

120

aligns with SRP because PostsStorage hasn’t had a reason to change when
we swapped the underlying database to Realm; it was not PostsStorage’s
responsibility to work with it in the first place.

8.5.3 Liskov Substitution Principle

The Liskov Substitution Principle (LSP) states that objects in a program should
be replaceable with instances of their subtypes without altering the correctness
of that program. What that means is that when you inherit from a class or an
abstract class or implement an interface (protocol), your objects should be re-
placeable and injectable wherever that interface or class that you subclassed
from was used. This principle is often referred to as design by contract or, as
of late in the Swift community, referred to as protocol-oriented programming.
The main message of this principle is that you should not violate the contract
that your interfaces that you subclass from promise to fulfill and that by sub-
classing, those subclasses could be used anywhere where the superclass was
previously used. If we look at our PostsStorage as an example again, then
according to Liskov’s Substitution Principle we could say that if we subclass
from it, let’s call it BetterPostsStorage, then everywhere we were using
the original PostsStorage, we could be using BetterPostsStorage in-
stead and our app won’t break or misbehave in any way.

8.5.4 Interface Segregation Principle

The Interface Segregation Principle (ISP) says many client-specific interfaces
are better than one general-purpose interface. It also states that no client should
be forced to depend on and implemented methods it does not use. What that
means is that when you create interfaces (protocols) that your classes imple-
ment, you should strive for and depend on abstraction over specificity but not
until it becomes a waste where you have to implement a bunch of methods
your new class doesn’t even use. For a lack of a better (shorter) example, let’s
pretend that we have the following classes and interfaces:

121

protocol WorkerInterface {
func eat()

func work()
}

class Worker: WorkerInterface {

func eat() {
print("worker's eating lunch")

}

func work() {
print("worker's working")

}
}

class Contractor: WorkerInterface {
func eat() {

print("contractor's eating lunch")
}

func work() {
print("contractor's working")

}
}

class Manager {

private let workers: [WorkerInterface]

init(workers: [WorkerInterface]) {
self.workers = workers

}

func manage() {
workers.forEach { (worker: WorkerInterface) in

worker.work()
}

}
}

let worker1 = Worker()
let worker2 = Worker()
let contractor = Contractor()

let manager = Manager(workers: [worker1, worker2, contractor])

manager.manage()

122

Here we have a WorkerInterface that has two methods eat() and work().
And we have two classes that implement it: Worker and Contractor. And
we have a Manager that relies on WorkerInterface to call work() on each
one of the passed worker and contractor objects to initiate the work. It’s all nice
and good and we are assuming here that all workers and contractors are humans
who can work but also need to eat so implementing the eat() method in both
of them is perfectly reasonable (we are assuming that the eat() method is
called on those objects somewhere else in the application).

But this quickly becomes unreasonable when we introduce a Robot class that
complies to the same WorkerInterface:

protocol WorkerInterface {
func eat()

func work()
}

class Worker: WorkerInterface {

func eat() {
print("worker's eating lunch")

}

func work() {
print("worker's working")

}
}

class Contractor: WorkerInterface {

func eat() {
print("contractor's eating lunch")

}

func work() {
print("contractor's working")

}
}

class Robot: WorkerInterface {

// do nothing here. cuz robots don't eat.
func eat() {}

func work() {

123

print("robot's working")
}

}

class Manager {

private let workers: [WorkerInterface]

init(workers: [WorkerInterface]) {
self.workers = workers

}

func manage() {
workers.forEach { (worker: WorkerInterface) in

worker.work()
}

}
}

let worker1 = Worker()
let worker2 = Worker()
let contractor = Contractor()
let robot = Robot()

let manager = Manager(workers: [worker1, worker2, contractor, robot])

manager.manage()

This violates ISP because our Robots don’t need to eat and Robot is forced to
implement an interface it doesn’t fully need, hence an empty eat() method.

What we need instead is to extract better, more concrete interfaces and use
them instead:

protocol WorkableInterface {
func work()

}

protocol FeedableInterface {
func eat()

}

class Worker: WorkableInterface, FeedableInterface {

func eat() {
print("worker's eating lunch")

124

}

func work() {
print("worker's working")

}
}

class Contractor: WorkableInterface, FeedableInterface {

func eat() {
print("contractor's eating lunch")

}

func work() {
print("contractor's working")

}
}

class Robot: WorkableInterface {

func work() {
print("robot's working")

}
}

class Manager {

private let workers: [WorkableInterface]

init(workers: [WorkableInterface]) {
self.workers = workers

}

func manage() {
workers.forEach { (worker: WorkableInterface) in

worker.work()
}

}
}

let worker1 = Worker()
let worker2 = Worker()
let contractor = Contractor()
let robot = Robot()

let manager = Manager(workers: [worker1, worker2, contractor, robot])

manager.manage()

125

Now we rely on a more specific WorkableInterface that Manager uses,
and Robot doesn’t have to implement what it doesn’t need. This in a nutshell
is what the Interface Segregation Principle is all about. You have to either
do a little bit more design up front to get your interfaces/protocols right or
you resolve it with adapters in existing systems. But ISP helps you maintain
Liskov’s Substitution Principle in your code as well.

This principle ties back into the current trend of protocol-oriented program-
ming.

8.5.5 Dependency Inversion Principle

The Dependency Inversion Principle (DIP) states, depend on abstractions, not
concretions. The best example that showcases this principle is the Dependency
Injection (DI) technique. With the Dependency Injection technique, when
you create an object, you supply and inject all of its dependencies upon it’s
initialization or configuration rather than let the object create or fetch/find its
dependencies for itself. Let’s look at the following example where DI is not
applied:

class MyAPIClient {

func httpGet(url: String, success: () -> Void, failure: () -> Void) {
// let's assume we do some http networking stuff here

// and let's pretend it succeeds

success()
}

}

class PostsService {

lazy var apiClient: MyAPIClient = { [unowned self] in
return MyAPIClient()

}()

func fetchPostsFromServer(success: () -> Void, failure: () -> Void) {
// more business logic to prepare url and params here

126

let postsUrl = "some_endpoint_url"

apiClient.httpGet(url: postsUrl, success: {
success()

}, failure: {
failure()

})
}

}

let postsService = PostsService()
postsService.fetchPostsFromServer(success: {

print("change some UI upon successful fetch of posts here")
}, failure: {

print("show some alert with an error")
})

Here when posts service creates its own instance of api client internally when
it needs it and then stores it in a property for future use. Overall it’s not
that bad because here we at least separate some responsibilities and delegate
low level networking code implementation to api client instead of keeping it
posts service. But the problem with this is that PostsService is tightly cou-
pled to MyAPIClient; whenever MyAPIClient’s public interface changes,
PostsService will have to change as well. This violates the Dependency
Inversion Principle because our high-level module (i.e., PostsService) de-
pends on the low-level module MyAPIClient. Instead, both should depend on
abstractions. The Dependency Injection technique can help us with that.

With the Dependency Injection technique, instead of creating an instance of
MyAPIClient internally in PostsService, we would inject in posts a service
object upon its initialization. Also we’d refactor the PostsService class in a
way that it does not depend on a specific and concrete MyAPIClient class but
instead relies on an interface abstraction:

protocol AbstractAPIClient {
func httpGet(url: String, success: () -> Void, failure: () -> Void)

}

class MyAPIClient: AbstractAPIClient {

127

func httpGet(url: String, success: () -> Void, failure: () -> Void) {
// let's assume we do some http networking stuff here

// and let's pretend it succeeds

success()
}

}

class PostsService {

let apiClient: AbstractAPIClient

init(apiClient: AbstractAPIClient) {
self.apiClient = apiClient

}

func fetchPostsFromServer(success: () -> Void, failure: () -> Void) {
// more business logic to prepare url and params here

let postsUrl = "some_endpoint_url"

apiClient.httpGet(url: postsUrl, success: {
success()

}, failure: {
failure()

})
}

}

let myApiClient = MyAPIClient()

let postsService = PostsService(apiClient: myApiClient)

postsService.fetchPostsFromServer(success: {
print("change some UI upon successful fetch of posts here")

}, failure: {
print("show some alert with an error")

})

As you can see PostsService now depends on an abstraction, Abstract-
APIClient, and gets its apiClient object injected upon initialization. The
great thing about that is that now we can easily create a new type of API client
(let’s say one with better password security or something) and we’d simply
inject instances of that into PostsService as long as that new API client
conforms to AbstractAPIClient that PostsService depends on. Posts
service doesn’t have to change when that happens.

128

By applying the Dependency Injection technique we’ve not only complied with
the Dependency Inversion Principle (DIP) but we also achieved better decou-
pling between our objects, complied with the Single Responsibility Princi-
ple (SRP), achieved the Liskov’s Substitution Principle (LSP), and made our
PostsService open for extension / closed for modification (OCP).

SOLID principles are the bedrock of good OOP design. Applying these prin-
ciples will help you build better, more maintainable software.

8.6 How do you manage dependencies in iOS ap-
plications?

This is not necessarily an architecture or design patterns question but it is never-
theless related and important. By dependencies they mean the code you don’t
write yourself but use to build your application, that is, third-party libraries
and frameworks. Your interviewer will gauge your level of experience setting
projects up and managing dependencies on big and small projects by asking
this question.

Expected Answer: Dependencies management is something you quite often
don’t think about right from the beginning of the project, usually not until you
get to the point when you need to use a third-party library or a framework. Then
a question presents itself - how do you do that? A naive approach would be to
copy third-party code that your app depends on and just drag-and-drop or copy
it into your project. The problem with that solution is that third-party libraries
themselves have their own dependencies and sometimes dependencies from
different libraries conflict with each other. For example a common scenario
is the following: you import library A version 1.1.0 and it depends on
library B versions from 2.1.0 to 2.2.0. To satisfy the requirements
of library A you add library B version 2.2.0 (the latest) to your project.
Then later you add library C version 0.5.0 to your project. But library
C depends on library B version 2.1.0. So now you have to resolve the
version conflict between library A and C depending on B. The resolution in

129

this case is to install library B version 2.1.0 because it will satisfy both
A and C. But the problem is that you have already added library B version
2.2.0 to your project. Now you’ll have to remove it and remove all the code
that uses APIs that are only in 2.2.0 and not in 2.1.0. And then you’ll
have to rewrite your code so that it uses APIs of library B version 2.1.0.
This is a lot of manual work that you as a developer should not be handling
because this example is simplified and the real-life issues related to dependency
management version conflicts are way more severe.

The solution to those types of issues is a dependency management tool, and the
most popular one in the iOS community is Cocoapods. Cocoapods is a Ruby
gem that helps you manage all the dependency’s complexity, resolves version
numbers of libraries (and their dependencies) that your project depends on, and
just in general makes your life easier when setting up iOS projects. The way
it works - it first figures out what libraries (called pods) our project depends
on by reading a list in your project’s Podfile. Then it will download those
libraries from their respective github repositories and put them together in an
Xcode project called Pods. After that it will create a new Xcode workspace for
your project and that new Pods project and will put them both in. It will also
set all the project settings and workspace settings up the way that your code is
fully ready to import the libraries and start using them.

If you need help setting up your project, have a look at this video where I walk
you through a typical Cocoapods setup: iOS Project Setup with Cocoapods

There’s an alternative to Cocoapods called Carthage. Carthage uses a different
approach to dependency management where it creates framework binaries for
your dependencies but leaves it up to you to integrate them into your project.
It’s an alternative that’s more flexible than Cocoapods but is harder to use.

Another error prone way of handling dependencies is to use git submodules but
you’ll have to do all the configurations and imports yourself.

Red Flag: The biggest red flag would be to say that you’re copying or dragging
and dropping external libraries/code manually into your codebase. This is an
unmaintainable solution that will not work in the long and short run.

130

https://cocoapods.org/
https://www.youtube.com/watch?v=1SZfSXqQcZs&t=3s
https://github.com/Carthage/Carthage

8.7 What is Functional Programming and Func-
tional Reactive Programming?

Functional programming (FP) is the new hotness in iOS/Swift, JavaScript, and
other dev communities. Except that it’s actually not that new. Expect this
question either in regards to Swift features or as a bigger architectural and
conceptual discussion question.

Expected Answer: Functional programming (FP) is a style of programming
that puts emphasis on functions as the main computational unit and treats them
like first-class citizens in your code. Those functions are akin to mathematical
functions. The functional programming paradigm avoids mutability and state
change either completely or as much as possible. FP is a declarative style of
programming where you would declare what your code should do instead of
telling it explicitly (i.e., imperatively) how to do it (what steps to take, etc.)
like in imperative programming. In contrast, imperative programming is a set
of steps to execute that usually heavily relies on state and mutability to do so.

Swift introduces more FP concepts built into the language than Objective-C:
value types, functions as first-class citizens, higher-order functions, and so on.
Those concepts make Swift functional friendly but not a fully functional lan-
guage.

Functional Reactive Programming (FRP) is a declarative programming paradigm
that combines in itself functional programming and reactive (async dataflow
programming) paradigms. It is also a declarative style of programming where
you would declare what your code does rather then explicitly state how it does
it. The reactive component of FRP allows us to introduce and describe the con-
cept of time, which is hard to work with in pure functional programming. FRP
helps us deal with user input and the asynchronous nature of iOS applications
in general (user input happens at some point in time, networking will finish
some time in the future, etc.).

FP and FRP rely heavily on higher-order functions such as map, reduce, and
filter that take functions as arguments and return other functions which makes

131

them highly composable.

Swift doesn’t have a native support for FRP but there are two excellent libraries
out there that implement functional reactive programming concepts and make
them easily available to us. Those libraries are ReactiveCocoa and RxSwift.

ReactiveCocoa offers composable, declarative, and flexible primitives that are
built around the grand concept of streams of values over time. These primitives
can be used to uniformly represent common Cocoa and generic programming
patterns that are fundamentally an act of observation. ReactiveCocoa is a great
way of getting FRP in your codebase, and Ash Furrow has written an entire
book on the subject of FRP where he uses ReactiveCocoa. The book’s called
Functional Reactive Programming on iOS.

RxSwift is an implementation of Reactive Extensions (Rx) in Swift. Reac-
tive Extensions is a library for composing asynchronous and event-based pro-
grams using observable sequences. RxSwift is a great (and in my opinion the
best) implementation of functional reactive programming concepts in Swift and
many other languages. The advantage of learning that library is that knowl-
edge is transferable and can be applied to any other platform/language where
Reactive Extensions is available (currently they have implementations in Java,
JavaScript, C#, C#(Unity), Scala, Clojure, C++, Lua, Ruby, Python, Groovy,
JRuby, Kotlin, Swift, PHP, Elixir, etc.).

Red Flag: These days the expectation is that developers at least understand
some basic concepts of FP. You don’t have to know what FRP is but you need
to be able to explain how FP differs from the typical imperative style of pro-
gramming.

8.8 What are the design patterns besides common
Cocoa patterns that you know of?

This is an advanced question that an interviewer will ask when you interview
for a senior or architect position. Be ready to recall a bunch of Gang of Four

132

https://github.com/ReactiveCocoa/ReactiveCocoa
https://github.com/ReactiveX/RxSwift
https://twitter.com/ashfurrow
https://leanpub.com/iosfrp
http://reactivex.io/

patterns and similar. This could be a followup to "What design patterns are
commonly used in iOS apps?" question.

Expected Answer: Besides commonly used MVC, Singleton, Delegate, and
Observer patterns there are many other that are perfectly applicable in iOS ap-
plications: Factory Method, Adapter, Decorator, Command, and Template.

8.8.1 Factory Method

Factory Method is used to replace class constructors, abstract and hide objects
initialization so that the type can be determined at runtime, and to hide and con-
tain switch/if statements that determine the type of object to be instantiated.

Let’s expand our previous Workers/Contractors/Robots example to demonstrate
it:

protocol WorkableInterface {
func work()

}

class Worker: WorkableInterface {

func work() {
print("worker's working")

}
}

class Contractor: WorkableInterface {

func work() {
print("contractor's working")

}
}

class Robot: WorkableInterface {

func work() {
print("robot's working")

}
}

enum WorkerType {
case Worker, Contractor, Robot

133

}

class TrainingAndPreparationCenter {
func workerableUnit(_ workerType: WorkerType) -> WorkableInterface {

switch workerType {
case .Contractor:

return Contractor()
case .Robot:

return Robot()
default:

return Worker()
}

}
}

class Manager {

private let workers: [WorkableInterface]

init(workers: [WorkableInterface]) {
self.workers = workers

}

func manage() {
workers.forEach { (worker: WorkableInterface) in

worker.work()
}

}
}

let trainingAndPreparationCenter = TrainingAndPreparationCenter()

let worker1 = trainingAndPreparationCenter.workerableUnit(.Worker)
let worker2 = trainingAndPreparationCenter.workerableUnit(.Worker)
let contractor = trainingAndPreparationCenter.workerableUnit(.Contractor)
let robot = trainingAndPreparationCenter.workerableUnit(.Robot)

let manager = Manager(workers: [worker1, worker2, contractor, robot])
manager.manage()

As you can see we now have a TrainingAndPreparationCenter object
that creates instances of WorkableInterface and the concrete instance type
instantiated is determined at runtime. The idea is that the Factory Method helps
you with SOLID principles by abstracting out how and what instances of con-
crete type are created and lets you rely on the abstract interface instead. There
is another related design pattern called Abstract Factory that is also useful in
iOS apps, but I rarely see it in the wild.

134

8.8.2 Adapter

Adapter is a design pattern that helps you, as the name suggests, adapt the
interface of one object to the interface of another. This pattern is often used
when you try to adapt third-party code that you can’t change to your code, or
when you need to use something that has an inconvenient or incompatible API.
Here’s an example:

protocol Shareable {

func socialNetworkingTitle() -> String
func socialNetworkingUrl() -> NSURL

}

class User {

let email: String
let username: String

init(email: String, username: String) {
self.email = email
self.username = username

}
}

class Post {

let title: String
let body: String

init(title: String, body: String) {
self.title = title
self.body = body

}
}

struct SomeUserInput: Shareable {

let textContent: String

func socialNetworkingTitle() -> String {
return self.textContent

}

func socialNetworkingUrl() -> NSURL {
let escapedContentString = self.textContent.

\.addingPercentEncoding(withAllowedCharacters: .urlHostAllowed)!
return NSURL(string: "http://mywebsite.com/\(escapedContentString)")!

135

}
}

class UserShareableAdapter: Shareable {

let user: User

init(user: User) {
self.user = user

}

func socialNetworkingTitle() -> String {
return "Check out this user \(self.user.username)"

}

func socialNetworkingUrl() -> NSURL {
let escapedUsernameString = self.user.username.

\.addingPercentEncoding(withAllowedCharacters: .urlHostAllowed)!
return NSURL(string:

\ "http://mywebsite.com/users/\(escapedUsernameString)")!
}

}

class PostShareableAdapter: Shareable {

let post: Post

init(post: Post) {
self.post = post

}

func socialNetworkingTitle() -> String {
return "Check out this post \(self.post.title)"

}

func socialNetworkingUrl() -> NSURL {
let escapedPostTitleString = self.post.title.

\.addingPercentEncoding(withAllowedCharacters: .urlHostAllowed)!
return NSURL(string:

\ "http://mywebsite.com/posts/\(escapedPostTitleString)")!
}

}

class SocialSharingService {

func shareShareable(shareable: Shareable) {
print("sharing this on social networking")
print("with the following title: \(shareable.socialNetworkingTitle())")
print("and url: \(shareable.socialNetworkingUrl())")

}
}

136

let user = User(email: "some@email.com", username: "some_username")
let post = Post(title: "some post title", body: "post content")

let someUserInout = SomeUserInput(textContent: "this is some user text")
let userShareableAdapter = UserShareableAdapter(user: user)
let postShareableAdapter = PostShareableAdapter(post: post)

let socialSharingService = SocialSharingService()

socialSharingService.shareShareable(shareable: someUserInout)
socialSharingService.shareShareable(shareable: userShareableAdapter)
socialSharingService.shareShareable(shareable: postShareableAdapter)

We have Shareable protocol. Those objects that conform to it can get us
data necessary for sharing on social networks (think Facebook, Twitter, etc.).
We also have a SocialSharingService that takes objects that conform to
Shareable and knows how to send them up on network (or some other way)
to share on social networks (side note: notice the name - service, i.e., external
communication).

We also have a SomeUserInput model object that directly conforms to
Shareable to be available for sharing by SocialSharingService. There
are also two other model objects that we’d like to share: User and Post. The
problem is that they don’t conform to the Shareable protocol, nor should
they. They could either be unavailable to us to change (think a third-party li-
brary classes) or, in this particular case, it doesn’t make sense and breaks SRP
to have them implement Shareable. The reason it doesn’t make sense and
breaks SRP is that if we ever want to change the way we share things and the
data we want to have for sharing, we’d have to modify those model classes. It is
not their responsibility to change when we change sharing. Their single respon-
sibility is to represent User- and Post-domain-specific data in our application.
No more, no less.

The solution to that problem is adapters. In our case we introduce two adapters
UserShareableAdapter and PostShareableAdapter that themselves con-
form to the Shareable protocol and take in and wrap respective User and
Post objects as parameters. Later, when SocialSharingService asks,

137

they will use those user and post objects’ data to satisfy Shareable and
SocialSharingService API, therefore “adapting” user and post objects
to its API.

So now if we ever want to share another model object, let’s say a Product,
then we don’t have to break its SRP and can just create another adapter that
will be supplying the right data from product to SocialSharingService
which preserves the SocialSharingService API and keeps it unchanged
regardless of new objects it needs to share. That way we not only implemented
the Adapter pattern but we also covered a lot of SOLID principles by doing it.

8.8.3 Decorator

Decorator is a wrapper around another class that enhance its capabilities. It
wraps around something that you want to decorate, implements its interface,
and delegates messages sent to it to the underlying object or enhances them or
provides its own implementation.

Let’s take a look at the following example:

protocol Product {
func price() -> Int
func name() -> String

}

class FullPriceProduct: Product {

func price() -> Int {
return 1000

}

func name() -> String {
return "I'm a product"

}
}

class DiscountedProductDecorator: Product {

private let decoratedProduct: Product

init(decoratedProduct: Product) {

138

self.decoratedProduct = decoratedProduct
}

func price() -> Int {
return Int(Float(decoratedProduct.price()) * 0.75)

}

func name() -> String {
return decoratedProduct.name()

}
}

class CheckoutManager {

func checkout(product: Product) {
let name = product.name()
let price = Double(product.price() / 100)
print("charging customer $\(price) for \(name)")

}
}

let fullPriceProduct = FullPriceProduct()
let discountedProduct = DiscountedProductDecorator(decoratedProduct:

\ fullPriceProduct)

let checkoutManager = CheckoutManager()

checkoutManager.checkout(product: fullPriceProduct)
checkoutManager.checkout(product: discountedProduct

Here we have a Product protocol that defines the interface all of our products
will have. There’s aFullPriceProduct class that implements Product pro-
tocol, and it is a simple model class, nothing to it. We also have a Checkout-
Manager class, instances of which operate with objects that implement the
Product protocol. The interesting thing is DiscountedProductDecorator.
It is used to apply one or many discounts to a product. The way it works is it
implements a Product interface and wraps around a decorated product object.
It delegates all the messages sent to it to an underlying decoratedProduct
and adds (“decorates with”) additional behavior in the price() method to ap-
ply a discount to the resulting product price. At the end of the day you can
wrap your objects in multiple decorators and use them just like the objects they
decorate because they comply to the same protocol. The users of the Product

139

protocol don’t have to know that they are working with a decorator that en-
hances the original object. We have complied with multiple SOLID principles
again, especially the Open/Closed Principle.

8.8.4 Command

Command is a design pattern where you’d implement an object that represents
an operation that you would like to execute. That operation can have its own
state and logic to perform the task it does. The main advantages of this design
pattern are that you can hide internal implementation of the operation from the
users, you can add undo/redo capabilities to it, and you can execute operations
at a later point in time (or not at all) instead of right away where the operation
was created. Let’s look at the following example:

import Foundation

protocol Command {
func execute()

}

class HTTPGetRequestCommand: Command {

private let url: URL

var result: String?

init(url: URL) {
self.url = url

}

func execute() {
print("fetching data from \(self.url)")
print(".....")
print("done")
self.result = "this is some json that we got from the backend"

}
}

class StorageSaveCommand: Command {

private let dataToSaveToDisk: String

init(dataToSave: String) {

140

self.dataToSaveToDisk = dataToSave
}

func execute() {
print("saving \(self.dataToSaveToDisk) to disk")
print("......")
print("done")

}
}

let productUrl = URL(string: "http://my-awesome-app.com/api/v1/products/12345")!

let getRequestCommand = HTTPGetRequestCommand(url: productUrl)
getRequestCommand.execute()
let jsonResult = getRequestCommand.result!

let saveToStorageCommand = StorageSaveCommand(dataToSave: jsonResult)
saveToStorageCommand.execute()

In the preceding example we have theCommand protocol that has the execute()
method that will be the common interface to start execution of our operations.
We have the HTTPGetRequestCommand that fetches data at a given URL
when executed. It also has a result variable that holds the result of com-
mand execution (we could’ve also used blocks or direct value return from the
execute() method).

We also have StorageSaveCommand that saves given data to disk when exe-
cuted. There’s nothing much to it.

Notice how both commands are initialized but they don’t do anything except
holding data until the execute() method is called. That’s what makes com-
mands so powerful. If you have a more complicated command it could aggre-
gate data it needs for execution over time and can even change the values it
has stored in itself before the actual execution happens or a command could be
never executed, for example.

To add undo/redo mechanics you’d utilize an array of Command objects and
execute them as you push or pop from the list. Showing an example of that is
another discussion for another chapter. If you want to learn more, please refer
to the resources at the end of this chapter.

141

8.8.5 Template

Template is a design pattern where the main concept is to have a base class
that outlines the algorithm of what needs to be done. The base class has several
abstract methods that are required to be implemented by its concrete subclasses.
These methods are called hook methods. Users of the Template Method classes
only interact using the base class that implements the algorithm steps, concrete
implementations of those steps are supplied by subclasses.

The following example demonstrates template method pattern:

class Report {

let title: String
let text: [String]

init(title: String, text: [String]) {
self.title = title
self.text = text

}

func outputReport() {
outputStart()
outputHead()
outputBodyStart()
outputBody()
outputBodyEnd()
outputEnd()

}

internal func outputStart() {
preconditionFailure("this method needs to

be overridden by concrete subclasses")
}

internal func outputHead() {
preconditionFailure("this method needs to

be overridden by concrete subclasses")
}

internal func outputBodyStart() {
preconditionFailure("this method needs to

be overridden by concrete subclasses")
}

private func outputBody() {
text.forEach { (line) in

142

outputLine(line: line)
}

}

internal func outputLine(line: String) {
preconditionFailure("this method needs to

be overridden by concrete subclasses")
}

internal func outputBodyEnd() {
preconditionFailure("this method needs to

be overridden by concrete subclasses")
}

internal func outputEnd() {
preconditionFailure("this method needs to

be overridden by concrete subclasses")
}

}

class HTMLReport: Report {

override func outputStart() {
print("<html>")

}

override func outputHead() {
print("<head>")
print(" <title>\(title)</title>")
print("</head>")

}

override func outputBodyStart() {
print("<body>")

}

override func outputLine(line: String) {
print(" <p>\(line)</p>")

}

override func outputBodyEnd() {
print("</body>")

}

override func outputEnd() {
print("</html>")

}
}

class PlainTextReport: Report {

143

override func outputStart() {}

override func outputHead() {
print("==========\(title)==========")
print()

}

override func outputBodyStart() {}

override func outputLine(line: String) {
print("\(line)")

}

override func outputBodyEnd() {}

override func outputEnd() {}
}

let htmlReport = HTMLReport(title: "This is a a great report",
text: ["reporting something important 1",

"reporting something important 2",
"reporting something important 3",
"reporting something important 4"])

htmlReport.outputReport()

let plainTextReport = PlainTextReport(title: "This is a a great report",
text: ["reporting something important 1",

"reporting something important 2",
"reporting something important 3",
"reporting something important 4"])

plainTextReport.outputReport()

Here we have Report outline the structure of the algorithm that we have to
print reports. But it’s an abstract class that doesn’t know the specific concrete
implementations to get all the bits and pieces in place to actually print a report.
It is a template. Subclasses HTMLReport and PlainTextReport provide the
specifics by implementing “hook” methods.

Users of Report will rely on its abstract interface instead of concrete HTML-
Report or PlainTextReport, that way we conform to SOLID principles
again.

One of the most used Template Method implementations on iOS is UIView-

144

Controller. Every time we subclass it, it provides “the algorithm imple-
mentation” and we override “hook methods” such as viewDidLoad(), view-
WillAppear(), and so on.

More about patterns:

For more details on Factory Method, Adapter, Decorator, Command, Tem-
plate, and many other design patterns’ implementations refer to the books Pro
Design Patterns in Swift and Pro Objective-C Design Patterns for iOS.

The patterns here are not the only ones you can use on iOS, but those are the
most common ones besides MVC and basics that I’ve seen in the wild.

Red Flag: Sticking only to MVC, Singleton, Delegate, and Observer patterns
is fine when you’re starting up with the iOS platform, but for advanced things
you need to reach deeper into more abstract and high-level stuff like Gang of
Four OOP Design Patterns. They are very useful and make your codebase more
flexible and maintainable.

8.9 Conclusion:

In this chapter we’ve covered design patterns and iOS apps architecture. These
are some of the most important things to know for iOS developers to get better
at their craft. By applying good architecture and design patterns, you help your-
self and your colleagues to have the common ground, language, and nomencla-
ture for things in code that you work with day to day. It improves the read-
ability, recognizability, maintainability, and flexibility of your code. It helps
you follow SOLID principles, which will help your code stand the test of time
and the most important and inevitable test that your codebase could ever face -
change!

145

https://www.amazon.com/Design-Patterns-Swift-Adam-Freeman/dp/148420395X
https://www.amazon.com/Design-Patterns-Swift-Adam-Freeman/dp/148420395X
https://www.amazon.com/Pro-Objective-C-Design-Patterns-iOS/dp/1430233303

146

Chapter 9

Bonus Chapter: Storage
Evolution (AKA You Don’t
Always Need Core Data!).

This chapter is a continuation of Chapter 6 Step Five: Learn How to Store Data.
In this chapter we’ll go over a refactoring process where we will evolve storage
classes that our application uses, starting with a simple in-memory array, to
NSUserDefaults, to on-disk file storage, and then eventually to Core Data.
All along this process we will preserve the API of our storage unchanged, ad-
hering to SOLID principles so that users of our objects and classes are not
concerned and coupled to our internal implementation. That way it will be
easy for us to change it, as you will see.

The reason this chapter is called a bonus” chapter is because it is not techni-
cally focused on interviews and interview questions, but is instead about prac-
tical day-to-day iOS development itself. This chapter is a sneak peek of my
next book that covers more practical stuff like what you see in this chapter. If
you’re interested in hearing about updates and progress on the next book please
sign up for the wait list here:

http://iosinterviewguide.com/next_book

147

http://iosinterviewguide.com/next_book

Every app, big or small, needs to store data. Typically when iOS developers
think about storing data they think about Core Data or a similar database so-
lution. But the goal for us is to be practical and to know our options. It turns
out that Core Data is not always the best solution, and sometimes something
simpler might suffice.

9.1 Storage Layer

A quick recap:

The storage layer can be as simple as an array or a dictionary of data that
holds models in memory for your app. Or it can be as complex as a Core Data
or custom SQL ORM solution that can be observed and queried with advanced
predicates. The main purpose and responsibility of that layer is to store data
for your application and to play the role of the ultimate source of truth for the
rest of your code.

9.2 Typical tools Used for Persistence in the Stor-
age Layer

The following classes, objects, and libraries/frameworks (in ascending order of
complexity) are used in the storage layer:

• In-memory arrays, dictionaries, sets, and other data structures

• NSUserDefaults/Keychain

• File/Disk storage

• Core Data

148

9.3 In-memory arrays, dictionaries, sets, and other
data structures

Probably when you hear the words “storage layer” you instantly think about
Core Data or a similar database technology that helps you persist things into
tables. But surprisingly enough, your storage layer could be as simple as an in-
memory array where you store a list of things you’ve fetched from the backend
API, for example. The main thing is that you abstract that internal implemen-
tation out from the rest of your application.

All Swift Collection Types and corresponding Objective-C types can be used as
the underlining mechanism for storage for your application. Array, NSArray,
Set, NSSet, Dictionary, and NSDictionary could all be used to save
things in the storage layer.

Advantages:

• easy and quick to create (they are just plain old arrays and hashes after
all)

• quite often it is actually the only thing you need

• can use key-value observing (KVO) to be notified of changes

Disadvantages:

• can’t be persisted to disk on its own without additional help (NSCoding
interface, for example)

• because they can’t be persisted, they can’t be restored from persistent
memory later

• can’t be used to store large amounts of data

149

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/CollectionTypes.html

Example:

Let’s say your app is displaying posts that are fetched from the backend. A
typical storage class for Posts will look like this:

struct Post {
let remoteId: NSNumber
let name: String

}

class PostsStorage {

private var posts = Dictionary<NSNumber, Post>()

func savePost(newPost: Post) {
self.posts[newPost.remoteId] = newPost

}

func getAllPosts() -> [Post] {
return Array(self.posts.keys.map { self.posts[$0]! })

}

func findPostByRemoteId(remoteId: NSNumber) -> Post? {
return self.posts[remoteId]

}
}

As you can see, there’s nothing crazy to it. It has an internal dictionary that
uses remoteId of Post structs as keys to store those objects.

The way you’d use that storage is pretty straightforward as well:

let postsStorage = PostsStorage()

let post1 = Post(remoteId: 1, name: "Post 1")
let post2 = Post(remoteId: 2, name: "Post 2")
let post3 = Post(remoteId: 3, name: "Post 3")
let post4 = Post(remoteId: 4, name: "Post 4")

postsStorage.savePost(post1)
postsStorage.savePost(post2)
postsStorage.savePost(post3)
postsStorage.savePost(post4)

print(postsStorage.getAllPosts())

150

print(postsStorage.findPostByRemoteId(post2.remoteId))

Compared to other storage layer tools, this is the simplest one, but it is often
everything you really need. I’ve seen applications where using Core Data was
an overkill and switching to an in-memory array of model objects was the best
solution for storing data. It removed the overhead of dealing with Core Data
setup, contexts, and coordinators.

Given that a lot of apps are actually fine with losing data from one launch of
the app to another and can quickly and easily fetch data from the backend,
in-memory storage is an invaluable, straightforward, and easy tool to use.

NOTE: ## Models and Collections

In this section, we talk about tools used to store data. In all cases, the data
we are storing are custom model class objects. A lot of naive implementations of
models and storage layers work with `NSDictionary`s as their models and access
values through keys. This is a very error-prone approach, and a custom `struct`
or `class` is always way better instead. So, just to reiterate, if we use arrays
and dictionaries, we use them to store collections of things; we do not make them
represent individual model objects.

In the next sections, we’ll see how this storage can be “evolved” and changed
by swapping the underlying storing mechanism. Abstraction usefulness will be
more apparent.

9.4 NSUserDefaults and Keychain

The next step up from in-memory storage is NSUserDefaults and Keychain.
Both of them, unlike in-memory storage, persist things to disk. They are also
way simpler than Core Data because there’s no underlining table or graph struc-
ture. At the same time, they do persist objects to disk, unlike an in-memory
solution. Simply put, NSUserDefaults and Keychain are just key-value
storage that you can write primitive data to.

151

9.4.1 NSUserDefaults

NSUserDefaults can store key primitive values like NSNumberand
NSString or objects that comply to the NSCoding protocol. Also, it can
store arrays or dictionaries that contain objects that comply to the NSCoding
protocol. The objects can be retrieved easily by accessing them with the key
they were stored with.

Typically we think of NSUserDefaults as a solution to store user settings or
preferences or tokens in (although tokens really should be stored in Keychain).
But in reality, for some apps, it’s a perfectly good option for storing the main
application data that acts as a database. As you will see in the following ex-
ample, it’s a perfectly reasonable substitution for our in-memory solution from
the previous section.

Example:

class Post: NSObject, NSCoding {
let remoteId: NSNumber
let name: String

init(remoteId: NSNumber, name: String) {
self.remoteId = remoteId
self.name = name

}

required convenience init?(coder decoder: NSCoder) {
guard let remoteId = decoder.decodeObjectForKey("remoteId") as? NSNumber,

let name = decoder.decodeObjectForKey("name") as? String
else { return nil }

self.init(remoteId: remoteId, name: name)
}

func encodeWithCoder(coder: NSCoder) {
coder.encodeObject(self.remoteId, forKey: "remoteId")
coder.encodeObject(self.name, forKey: "name")

}
}

class PostsStorage {

private let userDefaults = NSUserDefaults.standardUserDefaults()

152

private let storageNameSpacePrefix = "my_posts_"

func savePost(newPost: Post) {
let newPostData = encodePost(newPost)
self.userDefaults.setObject(newPostData,

forKey: self.postKey(newPost.remoteId))
}

func getAllPosts() -> [Post] {
return Array(self.allPostKeys().map { (key) -> Post in

let postData = self.userDefaults.objectForKey(key)
return decodeToPost(postData as! NSData)

})
}

func findPostByRemoteId(remoteId: NSNumber) -> Post? {
if let postData = self.userDefaults.

\.objectForKey(self.postKey(remoteId)) as? NSData {
return decodeToPost(postData)

}
return nil

}

private func encodePost(post: Post) -> NSData {
return NSKeyedArchiver.archivedDataWithRootObject(post)

}

private func decodeToPost(data: NSData) -> Post {
return NSKeyedUnarchiver.unarchiveObjectWithData(data) as! Post

}

private func postKey(remoteId: NSNumber) -> String {
return "\(self.storageNameSpacePrefix)\(remoteId.stringValue)"

}

private func allPostKeys() -> [String] {
return Array(self.userDefaults.

\.dictionaryRepresentation().keys.filter { (key) -> Bool in
return key.containsString(self.storageNameSpacePrefix)

})
}

}

In this example, we replaced dictionary storage with NSUserDefaults. In or-
der for us to be able to save Post objects to NSUserDefaults, we have to im-
plement the NSCoding protocol on them. So we convert Post into a class and
implement init?(coder decoder: NSCoder) and encodeWithCoder
to code and decode individual Post objects.

153

Also, we slightly change our save and retrieve methods. Now they use
NSKeyedArchiver and NSKeyedUnarchiver to convert Post objects to
NSData or decode them back from NSData to Post type before they can be
written or read from NSUserDefaults.

Oh, and notice that we have to use storageNameSpacePrefix so that we get
all the keys for our stored Posts later (otherwise
self.userDefaults.dictionaryRepresentation().keys will return
all they keys in NSUserDefaults).

The important thing though is that our public API for the storage remains the
same. Everyone who was using it and relying on it will continue to do it the
same way, but now the storage actually persists Posts in memory.

let postsStorage = PostsStorage()

let post1 = Post(remoteId: 1, name: "Post 1")
let post2 = Post(remoteId: 2, name: "Post 2")
let post3 = Post(remoteId: 3, name: "Post 3")
let post4 = Post(remoteId: 4, name: "Post 4")

postsStorage.savePost(post1)
postsStorage.savePost(post2)
postsStorage.savePost(post3)
postsStorage.savePost(post4)

print(postsStorage.getAllPosts())

print(postsStorage.findPostByRemoteId(post2.remoteId))

Advantages:

• persists things to disk (so the data can be restored between app launches)

• easy to use key/value storage

Disadvantages:

154

• can’t easily use KVO for notification (you’ll have to roll your own noti-
fication/observation system)

• can’t be used to store large amounts of data (it was not made for that)

• not that helpful when you need to filter and sort data

9.4.2 Keychain

Keychain is the tool for storing data securely. This is where you’d store user
passwords and tokens, not NSUserDefaults.

Typically, working with Keychain directly is a bit gnarly and tedious due to
its C-based API. I recommend using a library wrapper like KeychainAccess or
samkeychain instead.

Advantages:

• key-value storage for primitive values

• secure

Disadvantages:

• inconvenient API

• errors out and fails quite often

An interesting fact is that stuff saved in Keychain, unlike anything stored in
NSUserDefaults, will persist and survive an app uninstall/reinstall. The rea-
son being is that NSUserDefaults is the storage that is tightly coupled with
your application and Keychain is a global secure system storage managed by
Apple. That is both an advantage and disadvantage that allows us to do nice
things like storing a flag on the first application launch in Keychain, indicat-
ing that the app was installed for the first time. Next time, if the user uninstalls

155

https://github.com/kishikawakatsumi/KeychainAccess
https://github.com/soffes/samkeychain

and then reinstalls your app, you can check whether the flag is present or not
and go with default onboarding flow for a new user, for example, and do some
other custom onboarding for returning users.

9.5 File/Disk Storage

File and disk storage are typically used to persist bigger chunks of data like
images and videos but they can also be used as a substitute for your database.
File and disk storage are perfectly capable of storing the same type of objects as
NSUserDefaults: primitives like String and NSNumber, and dictionaries,
arrays, and custom objects that conform to the NSCoding protocol.

We will iterate over our previous storage example and swap the underlying
storage with an NSFileManager.

class Post: NSObject, NSCoding {
let remoteId: NSNumber
let name: String

init(remoteId: NSNumber, name: String) {
self.remoteId = remoteId
self.name = name

}

required convenience init?(coder decoder: NSCoder) {
guard let remoteId = decoder.decodeObjectForKey("remoteId") as? NSNumber,

let name = decoder.decodeObjectForKey("name") as? String
else { return nil }

self.init(remoteId: remoteId, name: name)
}

func encodeWithCoder(coder: NSCoder) {
coder.encodeObject(self.remoteId, forKey: "remoteId")
coder.encodeObject(self.name, forKey: "name")

}
}

class PostsStorage {

private let fileManager = NSFileManager.defaultManager()

156

private let storageNameSpacePrefix = "my_posts_"

func savePost(newPost: Post) {
let newPostData = encodePost(newPost)
let key = postKey(newPost.remoteId)
saveDataToDisk(key, directoryPath: documentsDirectory(),

data: newPostData)
}

func getAllPosts() -> [Post] {

return allPostKeys().map({ (fileName) -> Post in
let postData = self.fileManager.

\.contentsAtPath(fullPostPath(fileName))!
return decodeToPost(postData)

})
}

func findPostByRemoteId(remoteId: NSNumber) -> Post? {
let postPath = fullPostPath(postKey(remoteId))
if let postData = self.fileManager.contentsAtPath(postPath) {

return decodeToPost(postData)
}
return nil

}

private func postKey(remoteId: NSNumber) -> String {
return "\(self.storageNameSpacePrefix)\(remoteId.stringValue)"

}

private func allPostKeys() -> [String] {
do {

let directory = self.documentsDirectory()
return try self.fileManager.contentsOfDirectoryAtPath(directory).

\.filter({ (path) -> Bool in
return path.containsString(self.storageNameSpacePrefix)

})
} catch {

return []
}

}

private func encodePost(post: Post) -> NSData {
return NSKeyedArchiver.archivedDataWithRootObject(post)

}

private func decodeToPost(data: NSData) -> Post {
return NSKeyedUnarchiver.unarchiveObjectWithData(data) as! Post

}

private func documentsDirectory() -> String {

157

return NSSearchPathForDirectoriesInDomains(.DocumentDirectory,
.UserDomainMask,
true).first! + "/posts_storage"

}

private func saveDataToDisk(fileName: String,
directoryPath: String,

data: NSData) -> Bool
{

let filePath = "\(directoryPath)/\(fileName)"

do {
try self.fileManager.createDirectoryAtPath(directoryPath,

withIntermediateDirectories: true,
attributes: nil)

let success = self.fileManager.createFileAtPath(filePath,
contents: data,
attributes: nil)

return success

} catch {
return false

}
}

private func fullPostPath(postKey: String) -> String {
return self.documentsDirectory() + "/" + postKey

}
}

Here we still keep serializing our Post objects to NSData before we store
them, but the underlying storing mechanics are now using a file manager that
saves each post to disk as a file with a unique namespaced name.

The implementation is grown a little bit more with a few extra private methods
and do/catch blocks to accommodate the NSFileManager API, but other
than that, it remains the same overall. We still use the remoteId of each
post as a unique key to identify and access each post. To get all posts that
were stored in the getAllPosts() method, we examine the folder used by
the storage and get NSData for each file and decode it back to Post objects.
When we store Posts in savePost() method, we encode them into NSData
and persist them to disk. And when retrieving individual Post objects from
memory in the findPostByRemoteId() method, we get NSData for that

158

unique remoteId and then decode it to thePost object.

And the great thing is that, as with the previous iteration, our public API for
PostsStorage remains the same. Everyone who’s been using it will continue
to do so in the same fashion:

let postsStorage = PostsStorage()

let post1 = Post(remoteId: 1, name: "Post 1")
let post2 = Post(remoteId: 2, name: "Post 2")
let post3 = Post(remoteId: 3, name: "Post 3")
let post4 = Post(remoteId: 4, name: "Post 4")

postsStorage.savePost(post1)
postsStorage.savePost(post2)
postsStorage.savePost(post3)
postsStorage.savePost(post4)

print(postsStorage.getAllPosts())

print(postsStorage.findPostByRemoteId(post2.remoteId))

Advantages:

• persists things to disk (so the data can be restored between app launches)

• can store large amounts of data (big media files for example)

Disadvantages:

• can’t easily use KVO for notification (you’ll have to roll your own noti-
fication/observation system)

• not that helpful when you need to filter and sort data

This storage mechanism is a step up from NSUserDefaults and is pretty
robust when you need something more stable than just a key-value store but
you are not sure if you need a full-fledged database solution yet.

159

9.6 Core Data

Finally, we’ve got the good old Core Data database storage solution. Core
Data is an object graph persistence framework that helps you save objects to
a database. Under the hood, it uses SQLite (with options to use in-memory
and binary stores), but the interface is completely abstracted out and we are
interacting only with Core Data framework objects and classes when we use it.

NOTE: There are other database alternatives to Core Data such as Realm and SQLite.
We will not cover them in this edition, but you can learn more here
https://realm.io and here https://github.com/ccgus/fmdb

There is a lot to Core Data and it is a fairly complex piece of technology but
overall you typically work with it using the following classes and objects:

• NSManagedObjects represent data stored in the database. You can
think of them as model objects.

• NSManagedObjectContext allows you to insert, save, and retrieve
(using NSFetchRequest) NSManagedObjects from the database.

• NSFetchRequest is a “query” object that you use to retrieve
NSManagedObjects from the database, optionally filtered with an
NSPredicate and sorted with an NSSortDescriptor.

• NSFetchedResultsController is a more functional reactive way of
getting notifications about object changes in the database that are filtered
by criteria set in NSFetchRequest (think of it as notifications about
database changes).

• NSPredicate lets you add filters to NSFetchRequest queries.

• NSSortDescriptor lets you add sorting to your queries.

160

There are two major schools of thought when it comes to working with Core
Data: use NSManagedObject subclasses as your models or map and serial-
ize your custom model objects to NSManagedObjects and use them only for
persisting data to the database.

9.6.1 Going the NSManagedObject Subclass Route

Typically Core Data examples and tutorials will show you that you need to sub-
class your model object from NSManagedObject in order to be able to persist
them to disk. But subclassing couples you to the underlying implementation
details and behavior that comes with NSManagedObject. Also when you do
asynchronous work and operate with NSManagedObject subclasses you need
to keep a close eye on what NSManagedObjectContext you use to retrieve,
update, and save them. It is a typically intricate and error-prone approach that
causes a lot of bugs and confusion in the code. A good example of a library
that implements this approach is RestKit. As a side note, it mixes networking
and data persistence responsibilities together and is very bulky and difficult to
work with.

9.6.2 Going the Data Mapping/Serialization Route

A better approach is to map your model objects (just plain old NSObject sub-
classes or structs) to NSManagedObjects and use NSManagedObjects only
to persist data to disk. That way your code stays completely decoupled from
Core Data and model objects do not carry the burden of NSManagedObject’s
underlying behavior because they are not subclassing from them. There’s no
need to worry about multi-threading and NSManagedObjectContexts be-
cause most of your code operates with simple and straightforward
NSObject/Object subclasses or structs.

Let’s look at an implementation of such approach:

161

https://github.com/RestKit/RestKit

struct Post {
let remoteId: NSNumber
let name: String

}

class PostManagedObject: NSManagedObject {
@NSManaged var remoteId: NSNumber
@NSManaged var name: String

static func postManagedObject(remoteId: NSNumber,
name: String,
context: NSManagedObjectContext)
-> PostManagedObject

{
let entity = entityDescription(context)
let postManagedObject = PostManagedObject(entity: entity,

insertIntoManagedObjectContext: context)
postManagedObject.remoteId = remoteId
postManagedObject.name = name
return postManagedObject

}

private static func entityDescription(context: NSManagedObjectContext)
-> NSEntityDescription

{
return NSEntityDescription.entityForName(NSStringFromClass(self),

inManagedObjectContext: context)!
}

}

class PostsStorage {

private let persistentStoreCoordinator: NSPersistentStoreCoordinator
private let managedObjectContext: NSManagedObjectContext

init() {
let postEntityDescriptior = NSEntityDescription()
postEntityDescriptior.name = NSStringFromClass(PostManagedObject)
postEntityDescriptior.managedObjectClassName =

\ = NSStringFromClass(PostManagedObject)

let remoteIdAttributeDescriptor = NSAttributeDescription()
remoteIdAttributeDescriptor.name = "remoteId"
remoteIdAttributeDescriptor.attributeType = .Integer64AttributeType
remoteIdAttributeDescriptor.optional = false
remoteIdAttributeDescriptor.indexed = true

let nameAttribute = NSAttributeDescription()
nameAttribute.name = "name"
nameAttribute.attributeType = .StringAttributeType
nameAttribute.optional = false

162

nameAttribute.indexed = false

postEntityDescriptior.properties = [remoteIdAttributeDescriptor,
nameAttribute]

let managedObjectModel = NSManagedObjectModel()
managedObjectModel.entities = [postEntityDescriptior]

persistentStoreCoordinator = NSPersistentStoreCoordinator(
managedObjectModel: managedObjectModel)

do {
try persistentStoreCoordinator.

\.addPersistentStoreWithType(NSInMemoryStoreType,
configuration: nil,

URL: nil,
options: nil)

}
catch {

print("error creating persistentStoreCoordinator: \(error)")
}

managedObjectContext = NSManagedObjectContext(
concurrencyType: .MainQueueConcurrencyType)

managedObjectContext.persistentStoreCoordinator =
\ = persistentStoreCoordinator

}

func savePost(newPost: Post) {
encodePost(newPost)
saveDataToDatabase()

}

func getAllPosts() -> [Post] {

let fetchRequest = baseFetchRequest()

if let postManagedObjects = executeFetchRequest(fetchRequest) {
return postManagedObjects.map({ (postManagedObject) -> Post in

return decodeToPost(postManagedObject)
})

} else {
return []

}
}

func findPostByRemoteId(remoteId: NSNumber) -> Post? {

let fetchRequest = baseFetchRequest()

fetchRequest.predicate = NSPredicate(format: "remoteId == %@", remoteId)

163

if let postManagedObject = executeFetchRequest(fetchRequest)?.first {
return decodeToPost(postManagedObject)

} else {
return nil

}
}

private func encodePost(post: Post) {
PostManagedObject.postManagedObject(post.remoteId,

name: post.name,
context: managedObjectContext)

}

private func decodeToPost(postManagedObject: PostManagedObject) -> Post {
return Post(remoteId: postManagedObject.remoteId,

name: postManagedObject.name)
}

private func saveDataToDatabase() -> Bool {
if managedObjectContext.hasChanges {

do {
try managedObjectContext.save()
return true

} catch {
return false

}
} else {

return false
}

}

private func baseFetchRequest() -> NSFetchRequest {
let fetchRequest = NSFetchRequest(entityName:

\ NSStringFromClass(PostManagedObject))

let sort = NSSortDescriptor(key: "remoteId", ascending: true)
fetchRequest.sortDescriptors = [sort]

return fetchRequest
}

private func executeFetchRequest(fetchRequest: NSFetchRequest)
-> [PostManagedObject]?

{
return (try? managedObjectContext.

\ .executeFetchRequest(fetchRequest)) as? [PostManagedObject]
}

}

Here we are creating a struct Post that will be our actual model structure (that

164

is the thing that the rest of the application works with). And PostManaged-
Object, a subclass of NSManagedObject, is used to persist data mapped
from Post objects to the database. PostManagedObject is only used inter-
nally by PostsStorage to actually get data in and out from the database.

PostsStorage had experienced quite a change and now has NSPersistent-
StoreCoordinator to set up the database and entities that are going to be
stored in it, and NSManagedObjectContext to help with data persistence
and fetching.

We are setting up our database in a PostsStorage initializer with
NSPersistentStoreCoordinator, NSEntityDescription, and
NSAttributeDescriptions (for remoteId and name properties). Nor-
mally this setup will happen somewhere else in the iOS application with the
help of Xcode’s Data Model files, and instead of NSInMemoryStoreType
we’ll have it use actual SQLite under the hood. But doing it explicitly in code
like this is a perfectly fine approach as well.

To fetch and save objects we use NSManagedObjectContext and NSFetch-
Requests. When the data is saved on the outside we work with a Post ob-
ject, but then we map it into a PostManagedObject that can be saved to
Core Data and save it using managedObjectContext.save() in save-
DataToDatabase() method. When we retrieve objects from the database,
we get back PostManagedObjects in the getAllPosts() and findPost-
ByRemoteId() methods and then we map them back to Post objects that our
application can work with.

But the bottom line, again, is that we have the same public API in the storage as
before. Users of that storage can still rely on having savePost(), getAll-
Posts(), and findPostByRemoteId() methods that save and find Posts
in and from the database:

let postsStorage = PostsStorage()

let post1 = Post(remoteId: 1, name: "Post 1")
let post2 = Post(remoteId: 2, name: "Post 2")
let post3 = Post(remoteId: 3, name: "Post 3")
let post4 = Post(remoteId: 4, name: "Post 4")

165

postsStorage.savePost(post1)
postsStorage.savePost(post2)
postsStorage.savePost(post3)
postsStorage.savePost(post4)

print(postsStorage.getAllPosts())

print(postsStorage.findPostByRemoteId(post2.remoteId))

9.7 Storage Layer Plays Dual Role: Persistence
and Data Mapping and Serialization

As you saw with the previous examples, no matter how complex or simple those
examples were, they all had the same public API in the storage, and the work
the storage has done internally has similar parallels across implementations.
They all have some kind of permanent storage mechanism (in-memory dictio-
nary, NSUserDefaults, Disk file storage, or Core Data database,
etc.). And they all (except in-memory dictionary) encode or decode data before
saving or retrieving it.

That is due to the nature of the storage layer itself. It has to map data to some
kind of structure it can easily persist, and when retrieved back it is not useful
to the rest of the application. So it needs to be mapped back to model objects
and types that are convenient for us to work with.

You have the option to implement data serialization/mapping yourself just like
we’ve done in the previous examples but there are plenty of libraries out there
that can help you with that. Mantle and MTLManagedObjectAdapter are my
go-to choices when working with Core Data and JSON, for example.

166

https://github.com/Mantle/Mantle/
https://github.com/Mantle/MTLManagedObjectAdapter

9.8 Switching Storage

As was mentioned in the beginning of this section, one of the biggest advan-
tages of abstracting out the storage layer is that you can swap underlying per-
sistence mechanics when needed. Let’s say you start working on a new app
or a new feature and don’t know yet if you need persisted storage on a disk
database. So instead you can start implementing your storage as a simple array
or a dictionary and prototype or deliver your feature with that. And later when
you have more information and you know you really need to write the data to
a database you can easily replace that under the hood array with a Core Data
model and table. For the rest of your application nothing really changes - it
accesses the data the same way as before because you had a clearly defined
interface for that.

9.9 FRP in the Storage Layer.

Core Data, or other centralized storage are awesome, especially when you use
them to observe data in the functional reactive way.

Although they can be used to pull (i.e., query things manually), they are the
best when you can observe changes to your storage. The simplest example of
that would be NSFetchedResultsController. In fact, this is one of the
few Apple functional reactive tools in iOS.

A similar thing can be applied to in-memory data storage like arrays but you’ll
have to use either bare bones KVO or get help from a library like RxSwift or
ReactiveCocoa.

167

9.10 Be Practical in Your Storage Layer Imple-
mentation and Decisions

I’m a big believer in the using only what you need” philosophy. In the case
of storage, that means don’t overthink what you really need to have from your
storage layer. When you get a handle on Core Data, it sounds great to use it
everywhere for every application. This is not always the best approach. When
you have a hammer, everything looks like a nail.

In my experience in-memory, NSUserDefaults, and file/disk storage
are useful for prototyping and for applications with small data footprints that
can survive data wipes between app launches. Core Data, Realm, and SQL
storage, on the other hand, give you an advantage of data observation and are
very good database solutions when you need to store large amounts of data and
sort and filter them.

Keep your storage API clear and abstract out internal implementation following
the Single Responsibility Principle and you’ll be fine, no matter what storage
solution you’ve picked.

9.11 Conclusion

As mentioned in the introduction to this chapter, it is not focused on interviews
and questions but rather on practical day-to-day coding. This is a sneak peek
of my next book where I talk more about practical approaches like this one
to the other layers of responsibility in iOS applications, such as in the service
layer, UI layer, and so on. If you’d like to follow along with the book writing
progress, feel free to sign up here:

http://iosinterviewguide.com/next_book

168

http://iosinterviewguide.com/next_book

Chapter 10

Outro

Ok, so you’ve made it. You got to the end of this book.

I hope you learned something, or even a lot, along the way. And my best hope
is that you’ve gotten your dream job with the help of this book.

As I mentioned in the preface, I wrote this book because there wasn’t anything
like it out there, and when I was less experienced, I wished there was. The main
message of this book isn’t knowing all the questions and answering them “just
right” so you can pass that current pseudoexam called a technical interview.
The main message instead is you should know your shit, and then interviews
will be easy. The best approach I found to learning software development con-
cepts and languages, or anything you’re trying to learn, really, is to systematize
your learning. Get the big picture overview of what there is to learn about a
subject and then start to drill down into each branch of that tree. It’s as simple
as that.

Good luck!

169

	Preface
	Foreword
	Testimonials
	Acknowledgments
	Change Log
	Intro
	Who am I?
	Structure of this book
	Step One: Figure Out What the Big Picture Is
	Step Two: The Interview Game
	Step Three: Learn the Fundamentals
	Step Four: Get Productive with Networking
	Step Five: Learn How to Store Data
	Step Six: Go Crazy Responsive with UI Layouts
	Step Seven: Beyond MVC: Design Patterns, Architecture, FRP, and Dependencies Management

	Bonus Content

	Step One: Figure Out what the Big Picture Is
	What is an iOS application and where does your code fit into it?
	Patterns and Layers
	Storage Layer
	Service Layer
	UI Layer
	Business Logic Layer

	Zooming Out
	Zooming In
	Conclusion

	Step Two: The Interview Game.
	Before The Interview
	Job Search
	Figure out what team/company size you want to work with
	Marketing
	Preparation (Know Your Shit!)

	At The Interview
	Phone Intro
	Phone and/or Skype/Hangout/Voip Interview
	Onsite Interview
	Salary Negotiation Interview

	Importance of Soft Skills
	Keep Track of Progress
	Conclusion

	Step Three: Learn the fundamentals
	What is let and var in Swift?
	What is Optional in Swift and nil in Swift and Objective-C?
	What is the difference between [0.75]struct and [0.75]class in Swift? When would you use one or the other?
	How is memory management handled in iOS?
	What are properties and instance variables in Objective-C and Swift?
	What is a protocol (both Obj-C and Swift)? When and how is it used?
	What is a category/extension? When is it used?
	What are closures/blocks and how are they used?
	What is MVC?
	What are Singletons? What are they used for?
	What is Delegate pattern in iOS?
	What is KVO (Key-Value Observation)?
	What does iOS application lifecycle consist of?
	What is View Controller? What is its lifecycle?
	Conclusion

	Step Four: Get Productive with Networking
	What is HTTP?
	What is REST?
	How do you typically implement networking on iOS?
	What are the concerns and limitations of networking on iOS?
	What should go into the networking/service layer?
	What is NSURLSession? How is it used?
	What is AFNetworking/Alamofire? How do you use it?
	How do you handle multi-threading with networking on iOS?
	How do you serialize and map JSON data coming from the backend?
	How do you download images on iOS?
	How would you cache images?
	How do you download files on iOS?
	Have you used sockets and/or pubsub systems?
	What is RestKit? What is it used for? What are the advantages and disadvantages?
	What could you use instead of RestKit?
	How do you test network requests?
	Conclusion

	Step Five: Learn How to Store Data
	What is the storage layer for in iOS applications?
	What can you use to store data on iOS?
	What is NSCoding?
	What is NSUserDefaults?
	What is Keychain and when do you need it?
	How do you save data to a disk on iOS?
	What database options are there for iOS applications?
	How is data mapping important when you store data?
	How would you approach major database/storage migration in your application?
	Conclusion:

	Step Six: Go crazy responsive with UI layouts
	What are the challenges in working with UI on iOS?
	What do you use to lay out your views correctly on iOS?
	What are CGRect Frames? When and where would you use them?
	What is AutoLayout? When and where would you use it?
	What are compression resistance and content hugging priorities for?
	How does AutoLayout work with multi-threading?
	What are the advantages and disadvantages of creating AutoLayouts in code versus using storyboards?
	How do you work with storyboards in a large team?
	How do you mix AutoLayout with Frames?
	What options do you have with animation on iOS?
	How do you do animation with Frames and AutoLayout?
	How do you work with UITableView?
	How do you optimize table views performance for smooth, fast scrolling?
	How do you work with UICollectionView?
	How do you work with UIScrollView?
	What is UIStackView? When would you use it and why?
	What alternative ways of working with UI do you know?
	How do you make a pixel-perfect UI according to a designer's specs?
	How do you unit and integration test UI?
	Conclusion

	Step Seven: Beyond MVC. Design Pattens, Architecture, FRP, and Dependencies Management.
	What design patterns are commonly used in iOS apps?
	MVC
	Singleton
	Delegate
	Observer

	What is MVC?
	What is MVVM?
	What are the common layers of responsibility that an iOS application has?
	UI Layer
	Service Layer:
	Storage Layer:
	Business Logic Layer:

	What are SOLID principles? Can you give an example of each in iOS/Swift?
	Single Responsibility Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	How do you manage dependencies in iOS applications?
	What is Functional Programming and Functional Reactive Programming?
	What are the design patterns besides common Cocoa patterns that you know of?
	Factory Method
	Adapter
	Decorator
	Command
	Template

	Conclusion:

	Bonus Chapter: Storage Evolution (AKA You Don't Always Need Core Data!).
	Storage Layer
	Typical tools Used for Persistence in the Storage Layer
	In-memory arrays, dictionaries, sets, and other data structures
	NSUserDefaults and Keychain
	NSUserDefaults
	Keychain

	File/Disk Storage
	Core Data
	Going the NSManagedObject Subclass Route
	Going the Data Mapping/Serialization Route

	Storage Layer Plays Dual Role: Persistence and Data Mapping and Serialization
	Switching Storage
	FRP in the Storage Layer.
	Be Practical in Your Storage Layer Implementation and Decisions
	Conclusion

	Outro

